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ABSTRACT
ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a
set of points, without any free parameters, or assumptions about shape. It uses the Voronoi
tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures
probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes
the ZOBOV algorithm, and the results from its application to the dark matter particles in a region
of the Millennium simulation. Additionally, the paper points out an interesting high-density
peak in the probability distribution of dark matter particle densities.
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1 I N T RO D U C T I O N

Voids are an essential component of the cosmic web (Bond, Kofman
& Pogosyan 1996) of matter in the Universe on several Mpc scales.
They are fascinating from an information-theoretic viewpoint as a
probable component of efficient descriptions of large-scale structure
in the non-linear regime. Voids also provide useful tools for studying
cosmology and galaxy formation. The way in which matter inside a
void flows away from its centre holds information about cosmolog-
ical parameters such as the matter density �m and dark energy den-
sity �� (Dekel & Rees 1994; Bernardeau & van de Weygaert 1997;
Fliche & Triay 2006), and about the clustering, if it exists, of dark
energy (Mota, Shaw & Silk 2008). Also, measuring the evolution of
void ellipticities can give constraints on the dark energy equation of
state (Lee & Park 2007). The existence of large voids has been
invoked to explain the ‘cold spot’ on the cosmic microwave back-
ground (CMB) (Rudnick, Brown & Williams 2007), anomalously
low large-angle CMB anisotropies (Inoue & Silk 2006) and even
the apparent accelerating expansion of the Universe (e.g. Moffat
2006; Alexander et al. 2007; Célérier 2007). Voids are also rela-
tively pristine laboratories to study galaxy formation and evolution,
containing the most isolated galaxies in the Universe. For example,
Peebles (2001) has pointed out that there seem to be fewer galaxies
in voids than cosmological simulations predict. Even if this is not a
discrepancy with the underlying � cold dark matter (�CDM) cos-
mology, it contains valuable information about galaxy formation.

Despite these useful features of voids, they are not currently in the
forefront of cosmological probes. One reason for this is that there re-
mains no standard definition of them. The Aspen-Amsterdam Void-
Finder Comparison Project (AAVFCP Colberg et al. 2008) makes
an important first step in exploring differences and similarities in
void definitions, but still a consensus about how to define a void does
not exist. Here, I present ZOnes Bordering On Voidness (ZOBOV),
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a void finder whose features, I believe, are appealing enough that
it represents a net contribution towards that consensus rather than
simply adding another alternative to reconcile with the others.

Many void finders define voids as spheres, or unions of a finite
number of spheres or other shapes (e.g. Kauffmann & Fairall 1991;
Müller et al. 2000; Hoyle & Vogeley 2002; Colberg et al. 2005).
This definition has some theoretical justification, since underdense
regions expanding in a homogeneous background tend to become
more spherical with time (Icke 1984). Also, this definition is ge-
ometrically simple. However, the real Universe consists of many
underdense regions that collide with each other and produce voids
that are often more polyhedral than spherical (e.g. Icke & van de
Weygaert 1987), or even more generally shaped (Shandarin et al.
2006). ZOBOV imposes no prejudice about the shape, or even topol-
ogy, of a void. Some other void finders (e.g. El-Ad & Piran 1997;
Aikio & Mähönen 1998; Plionis & Basilakos 2002; Shandarin et al.
2006; Aragón-Calvo et al. 2007; Hahn et al. 2007; Platen, van de
Weygaert & Jones 2007) also define voids with no, or only weak,
rules about their shapes.

ZOBOV aims to find voids from a set of points with as few restric-
tions as possible. Conceptually, a ZOBOV void is simply a density
minimum with a depression around it. ZOBOV has no free parame-
ters. However, the ambiguity in void finding, when applied to noisy
data, must be placed somewhere. With no free parameters to tune,
ZOBOV returns many (indeed, mostly) shallow, hardly visible voids.
However, ZOBOV measures a statistical significance for each void.
A physical significance criterion can also be used, requiring that a
void’s minimum density ρmin/ρ̄ < 0.2. This is a characteristic den-
sity of a void in an Einstein-de Sitter model (with only a slightly
different density in �CDM) obtained using a top-hat spherical ex-
pansion model (Blumenthal et al. 1992; Sheth & van de Weygaert
2004). For the abstract problem of finding voids in a particle distri-
bution, this strategy of returning all possible voids, even statistically
dubious ones (as long as they are marked as such), seems more satis-
fying than making an arbitrary choice of free parameters. For many
applications, though, actual use of a ZOBOV void catalogue might

C© 2008 The Author. Journal compilation C© 2008 RAS



2102 M. C. Neyrinck

require another arbitrary choice, about the level of significance at
which to accept a void. Another philosophical difference between
ZOBOV and most void finders is that ZOBOV returns subvoids along
with voids.

ZOBOV is an inversion of an ‘almost parameter-free’ dark mat-
ter halo finder, called VOronoi Bound Zones (VOBOZ; Neyrinck,
Gnedin & Hamilton 2005, hereafter NGH). The major change in
ZOBOV is that it looks for density minima instead of maxima. In
fact, the VOBOZ–ZOBOV algorithm is perhaps better suited for void
finding than halo finding. This is because the algorithm typically
detects highly non-spherical shapes; to get roughly spherical, viri-
alized haloes, VOBOZ trims their edges with a boundedness criterion
using particle velocities. It is in this step that VOBOZ loses its pure
parameter freedom.

Perhaps the existing void finder most similar to ZOBOV is the
Watershed Void Finder (WVF; Platen et al. 2007). Both use tessella-
tion techniques to measure densities, and both use the ‘watershed’
concept, defining voids with analogy to catchment basins in a den-
sity field. However, WVF uses several clever techniques from the
field of mathematical morphology to smooth the particle density
before defining voids, while ZOBOV analyses the raw, unsmoothed
data. There are other methods that use tessellation techniques to find
clusters (Ramella et al. 2001; Barkhouse et al. 2006; Melnyk, Elyiv
& Vavilova 2006; Söchting et al. 2006; van Breukelen et al. 2006)
or voids (Gaite 2005; Aragón-Calvo et al. 2007).

First, I will discuss the ZOBOV algorithm, and then I will discuss
its application to dark matter particles in a region of the Millennium
simulation (Springel et al. 2005). Some of these results appear in
AAVFCP, where they are also compared to the results of other void
finders. Finally, I will discuss what I feel are the unique strengths
and weaknesses of ZOBOV, and what could be done to improve it.

2 M E T H O D

The ZOBOV algorithm is the same as the first two steps of the VOBOZ

(NGH) algorithm, except that it searches for density minima instead
of maxima.

2.1 Particle density and adjacency measurement

The first step is the density estimation at each dark matter par-
ticle, using what Schaap (2007) calls the Voronoi Tessellation
Field Estimator (VTFE). Tessellation methods for density estima-
tion are widely used in many fields (e.g. Brown 1965; Ord 1978;
Bülow-Olsen, Sackville Hamilton & Hutchings 1983). A good ref-
erence on this topic is provided by Okabe et al. (2000); see van de
Weygaert & Schaap (2008) for a review specific to large-scale struc-
ture. The VTFE (along with its dual, the DTFE) gives arguably the most
local possible density estimate that has meaningful information. The
Voronoi tessellation divides space into cells around each particle,
with the cell around particle i defined as the region of space closer to
particle i than to any other particle. The density estimate at particle i
is 1/V(i), where V(i) is the volume of the Voronoi cell around parti-
cle i. The Voronoi tessellation also gives a natural set of neighbours
for each particle (the set of particles whose cells neighbour i’s cell),
which ZOBOV uses in the next step.

Fig. 1(a) shows a set of particles in 2D, corresponding to galaxies
in a slice of the Millennium simulation. Fig. 1(b) depicts the Voronoi
tessellation of this set of particles, with the Voronoi cells shaded
according to area.

2.2 Zoning

The second step in ZOBOV is the partition of the set of particles
into zones around each density minimum. This is done partly for
computational speed, and partly to compress the information in the
data set. A minimum is a particle with lower density than any of its
Voronoi neighbours. ZOBOV sends each particle to its lowest density
neighbour, repeating the process until it arrives at a minimum. A
minimum’s zone is the set of particles which flow downwards into
it, and a zone’s core is the minimum-density particle of the zone.
Fig. 1(c) shows how ZOBOV partitions the particles in the previous
panels into zones. These zones could conceivably be called voids.
Because of discreteness noise, though, many zones are spurious,
and others are only the central parts of what are picked out as voids
by eye. Thus, it is necessary to join some zones together to form the
final voids.

2.3 From zones to voids

Zones are joined as follows. Imagine a 2D density field (represented
as height) in a water tank (see e.g. fig. 1 of Platen et al. 2007). For
each zone z, the water level is set to z’s minimum density, and
then raised gradually. Water may flow, along lines joining Voronoi
neighbours, into adjacent zones, adding them to the void defined
around the zone z. The process stops when water flows into a deeper
zone (with a lower minimum than z’s), or if z is the deepest void
when water floods the whole field. The final void corresponding to
z is defined as the set of zones containing water just before this
happens.

The minimum-density (core) particle of the original zone is
also the minimum-density particle of the zone’s void. Many low-
significance zones fail to annex surrounding zones as they attempt
to grow; a zone in this situation has a void equal to itself. The density
(water level) at which water flows into a deeper zone is recorded as
ρ l(z) (l stands for ‘link’ to a deeper zone).

Fig. 1(d) shows the stages of growth that the deepest void in the
set of particles undergoes. Successively lighter colours shade zones
added when the density level reaches successively higher levels.
Since this is the deepest void, its last extent encompasses the whole
simulation, except for the zone with the highest density particle
separating it from other zones, in the lower right-hand corner of
the figure. This does not mean that other voids are not detected;
they are subvoids of this largest void. Still, to form voids conforming
better to intuition, a further criterion could be used to halt the growth
of voids containing several zones. I will come back to this issue after
discussing the statistical significance of voids, which will be useful
for defining their edges.

This way of defining voids can lead to surprising void topologies
and shapes. For example, if a set of particles consists of a clump
surrounded by a low, uniform-density background, everything but
the clump will be detected as a void. Also, even a single low-density
particle along a wall between two visually apparent voids might
cause ZOBOV not to detect them separately, but instead to detect a
single, dumbbell-shaped void. However, many (about 16) particles
directly participate in each particle’s density estimate. Thus, such
a hole in the wall between voids would have to be a conspiracy
of many particles, and would likely look like a significant hole by
eye, as well. ZOBOV operates under an implicit assumption that the
discreteness noise is similar to that in a Poisson density sampling,
and ZOBOV could give surprising results if particles are carefully
arranged to fool it.
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Figure 1. (a) Galaxies (Croton et al. 2005, down to B = −10) from a 40 × 40 × 5 (h−1 Mpc)3 slice of the AAVFCP region. The outer boundary is 45 h−1 Mpc
square. The slice is of the same size as the dark matter illustration in Fig. 6, but is at an edge of the central 40 h−1 Mpc cube, not at the centre. It was chosen
because the voids in this figure are less well defined, and thus richer in structure. (b) The 2D Voronoi tessellation of galaxies in this slice, with each particle’s
Voronoi cell shaded according to its area. The galaxies outside the inner (40 h−1 Mpc) boundary are shown because they contribute to the tessellation. (c) Zones
of galaxies. The cores (density minima) of each zone are shown with crosses; the different colours merely demarcate different zones. (d) The growth of void 1,
the deepest void in the sample. With analogy to a water tank, the water level (density) is increased and zones the water runs into are added to the void. Colours
from dark to light indicate the stage at which the zone is added to the void. The darkest colour is the original zone, the next darkest is the first zone or set of
zones added, etc. The only zone that is never included is that with the highest density link to another zone, in the lower right-hand corner. A measure of the
probability that each zone-adding event leads to a void that did not arise from Poisson noise is shown in Fig. 4.

2.4 Statistical significance of voids

The probability that a void v is real is judged according to its density
contrast, i.e. the ratio r(v) of ρ l(v), the minimum-density particle on
a ridge beyond which is a deeper void, to v’s minimum density, ρmin.
This is not the only conceivable way to judge the significance of a
void. But it is simple, and the probabilities it returns roughly align
with what visual inspection would suggest.

The density contrast r is converted to a probability by compar-
ing to a Poisson particle distribution. Several statistical properties
of Voronoi diagrams applied to Poisson-sampled uniform density
distributions are well understood. For example, the distribution of
Voronoi cell volumes is well approximated by a gamma distri-
bution (Kiang 1966), and the average number of Voronoi neigh-
bours (48π2/35 + 2 ≈ 15.54) is even known analytically (Okabe
et al. 2000). Unfortunately, the distribution of contrasts of density
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Figure 2. The cumulative probability function P(r) of the ratio r(v) between
the lowest density of a zone and the density at which water would leak into
an adjacent zone that is deeper. The solid and dashed curves show P(r) for
uniform-density Poisson processes using 2563 and 1283 particles. The curve
has the same shape as the number of particles increases. The dotted curve
shows the fit in equation (1). The dot-dashed curve shows P(r) for voids in
the region analysed in the AAVFCP.

Table 1. Void abundances for various density contrasts r in a Poisson par-
ticle simulation and in the AAVFCP region. With analogy to a Gaussian
distribution, the first two columns list the levels of probability correspond-
ing to different σ s. The third column (r) gives the density contrast with
abundance P(r) in a Poisson simulation, calculated using equation (1). The
fourth column gives the number of voids exceeding density contrast r in the
40 h−1 Mpc AAVFCP region. The last column adds the constraint that
the minimum density of the void ρmin < 0.2, in units of the mean density.
The last two columns are illustrated in the top panel of Fig. 8.

σ P(r) r Voids Voids (ρmin < 0.2)

0 1 1 9308 5543
1 0.317 1.22 2362 1722
2 4.55 × 10−2 1.57 525 502
3 2.70 × 10−3 2.00 164 163
4 6.33 × 10−5 2.45 64 64
5 5.73 × 10−7 2.89 29 29
6 1.97 × 10−9 3.3 13 13
7 2.56 × 10−12 3.7 5 5

depressions in a Poisson Voronoi diagram is not known. It
seems difficult to model analytically or from known results, since
each depression has an unknown number of particles, whose esti-
mated densities depend on each other in a complicated way. There-
fore, for ZOBOV, this distribution is measured in a Monte Carlo
fashion from Poisson sampling.

Let the cumulative probability P(r) be the fraction of voids in
a Poisson particle distribution with density contrast greater than r.
Fig. 2 shows P(r) as a function of r for two cubic Poisson simula-
tions (assuming periodic boundary conditions), with 1283 and 2563

particles. It also shows the following fit to P(r):

P(r ) = exp[−5.12(r − 1) − 0.8(r − 1)2.8]. (1)

This P(r) gives an estimate of the likelihood that a void with density
contrast r could arise from Poisson noise, i.e., that it is fake. Table 1
shows density contrasts corresponding to the first seven ‘σ s’ (with
analogy to a Gaussian distribution), calculated using this fit. The fit
may be trusted to roughly r = 3, beyond which there is no Poisson
data. In NGH, we found that the analogous significance measure for

haloes seems to lose its meaning at some point between the 4 and
7σ level anyway. That is, 7 σ haloes are not visibly more robust
than 4 σ ones.

Fig. 2 also shows the cumulative distribution of the density con-
trast r for a region of Millennium simulation, discussed in Section 3;
results for this region are listed in Table 1, as well. Possibly, a nat-
ural place to stop accepting voids as real in this data set would be
where r goes below the curves’ intersection, at r ≈ 1.5. However,
this occurs at about a 2σ level, which seems quite low.

In the 2563-particle Poisson simulation, ZOBOV detected 335 025
voids; thus, the average number of particles in a zone is 50.1. This
also means that one out of every 50.1 particles is a density mini-
mum. The average number of particles in a void is greater than 50.1,
though, since a void may be comprised of many zones.

The 2D version of equation (1) is

P(r ) = exp[−2.6(r − 1)]. (2)

This fit is based on a rather small set of 2562 uniformly Poisson-
distributed particles. It only extends to P(r) ≈ 10−3 (about 3σ ). This
fit gives r = 1.44, 2.19, 3.3, 4.7, 7, 9 and 11 for significance levels
of 1–7σ .

In addition to the statistical probability criterion, there is a simple
physical criterion to use. The natural dark matter density associ-
ated with a top-hat void that has undergone spherical expansion is
ρvoid ≈ 0.2 (hereafter, densities are assumed to be in units of the
mean density) at redshift zero. Because the densities of galaxies
and dark matter differ in general, this criterion may be inappropri-
ate to use for galaxies. This could be incorporated into the signifi-
cance measure, for example by multiplying the probability the void
is fake statistically by the probability of getting its core-particle
(minimum) density ρmin in a Poisson Voronoi diagram with density
0.2. However, in the AAVFCP sample, all ZOBOV voids statistically
significant at the �3σ level have core densities ρmin < 0.2 anyway
(see Fig. 8). Also, the population with ρmin < 0.2 is quite distinct;
there are few voids close to ρmin = 0.2. So, a simple cut-off at
ρmin = 0.2 may suffice as a physical criterion, redundant if only
large significance voids are used.

2.5 Defining the edges of voids

As noted above, the deepest ZOBOV void in a set of particles will
encompass all zones except the one with the highest density ridge
separating it from other zones. There are (at least) three ways to deal
with this situation.

The first option is to do nothing further. The raw ZOBOV results
would then consist of a large void, with several subvoids (and sub-
subvoids, etc.) of varying significance levels. A zone can belong to
multiple voids and subvoids. This option could be appealing in its
simplicity, and is well suited to the physical hierarchy that voids
are thought to have in the Universe (Dubinski et al. 1993; Sheth
& van de Weygaert 2004; Furlanetto & Piran 2006). However, the
following two options likely produce more practically usable sets
of voids.

2.5.1 Specifying a significance level

The second option is to excise subvoids exceeding a particular sig-
nificance level (e.g. 5σ ) from parent voids. If a subvoid is removed
from a void, then all zones which join the parent void in the same
accretion event as that subvoid, or in subsequent ones, are also re-
moved. This option is a natural choice if disjoint voids are desired,
which is traditionally the case.
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Figure 3. Two strategies for detecting the edges of highly significant voids,
as applied to the particle set in Fig. 1. In (a), discussed in Section 2.5.1, the
user chooses a significance level at which to accept a void (here, 2σ ). Voids
exceeding this threshold stop growing when they encounter another void
exceeding this threshold. Particles in the darkest regions belong to no void
over 2σ . In (b), discussed in Section 2.5.2, a most probable extent is found
for each void. Zones are coloured according to their significance. Zones in
the deepest, 4σ void are lightest; zones included in 3, 2 and 1σ voids are
coloured increasingly darkly. Particles in the darkest region belong to no
void over 1σ . The hatched regions are 1σ subvoids.

Fig. 3(a) shows the result of this procedure, applied to the set of
particles in Fig. 1, using a 2σ threshold of r = 2.19. According to
equation (2), voids 1 and 2 are significant at the 4σ level, and voids
3 and 4 are significant at the 3 and 2σ levels. The darkest regions
belong to no void over 2σ .

2.5.2 Determining the most probable extent of voids

The third option is to use the density contrasts of voids and subvoids
to define a most probable extent of voids. Suppose a zone z has a

sequence of extents, vi . For example, Fig. 1(d) shows the various
possible extents for void 1 in that particle set.

At each zone-adding event, define a significance Si . The signifi-
cance of zero zone additions S0 ≡ P[r(z)], the probability of zone z’s
density contrast r(z) arising in a Poisson particle distribution. Note
that the density ratios r(z) = ρ l(z)/ρmin(z) and r(v) = ρ l(v)/ρmin(z)
can differ. ρ l(v) is the lowest density among ridge particles linking
z to a deeper zone (perhaps with a path through other zones), while
ρ l(z) is the lowest density among ridge particles linking z to any of
its neighbouring zones.

Call the void after the ith zone-adding event vi{zi+1,j}(v0 ≡ z),
and call the set of zones to be added in the (i + 1)st zone-adding event
Zi+1 = {zi+1,j}. To judge the wisdom of the (i + 1)st addition,
compare the probability that vi and all of the zones in Zi+1 are
individually fake to the probability that their union, vi+1 = vi +
Zi+1, is fake. Given Si , define Si+1 as

Si+1 = Si
P[r (vi+1)]

P[r (vi )]
∏

j P[r (zi+1, j )]
. (3)

Here, r(vi ) = ρ l(vi )/ρmin(z), where ρ l(vi ) is the lowest density
among particles on the ridge separating vi from the set of prospec-
tive new zones Zi+1. If the new zone set Zi consists of other entire
voids (i.e. sets of zones) with subvoids, only the voids, and not the
subvoids, enter the product in the denominator.

For example, zone 3 in Fig. 1(c), and its two neighbouring zones
below and to the left of it (call them 3′ and 3′′), is separated by
an insignificant (below 1σ ) density ridge, undetectable by eye in
the original particle set. The probability that all three are fake (sep-
arately arose from Poisson noise) is P[r(3)] P[r(3′)] P[r(3′′)] =
P(1.28)P(1.11)P(1.06) = 0.30, using equation (2). The probability
that their union is fake is P[r(3 + 3′ + 3′′)] = P(3.57) = 0.0013.
Since the latter is rarer, the union is favoured statistically. In the Si

notation, these probabilities are normalized differently; to get the
expressions in this paragraph, multiply through by the probabilities
in the denominator of equation (3).

Fig. 4 shows the significance of the various possible extents for
the three large voids in Fig. 1. It shows the first dip in void 3’s
likelihood of fakeness when the first group of zones is added, dis-
cussed in the previous paragraph. The second (and last) prospective
addition, the last one before a deeper zone is encountered, gives
an upturn in void 3’s curve. Thus, the last addition is not favoured

Figure 4. Significances of various extents of the three voids in Fig. 1 that
encompass more than their central zone. The extents at the minima of these
curves are shown in Fig. 3(b), with the exception of void 1. For void 1, the
extent shown in Fig. 3(b) has a number of additions i = 3, the minimum of
the curve excluding the high-i ramp into high-density regions.
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statistically. However, using the method of Section 2.5.1, this extra
zone is included in zone 3.

Void 1, the deepest void, has the longest curve in Fig. 4. Its prob-
ability of fakeness reaches a local minimum after the third addition
of zones. In accord with intuition, the curve then increases again, but
then as the densest zones in the figure eventually get included, the
density contrast grows sharply, making the curve plunge. ZOBOV is
detecting everything except the dense points in the lower right-hand
corner as a highly significant void. To prevent voids from growing
into haloes, a density limit for links between zones may be set. For
dark matter, a natural value for this limit would be ρl,max = 0.2.
Alternatively, one might simply accept the lowest minimum before
the ramp downward at the end.

Fig. 3(b) shows most probable ZOBOV void extents for the 2D
particle set. Zones are coloured according to their significance level.
Zones in the deepest, 4σ void (defined using three zone-addition
events) are lightest; zones included in 3, 2 and 1σ voids are coloured
increasingly darkly. Particles in the darkest region belong to no void
over 1σ . The hatched zones are 1σ subvoids within larger voids. All
zones are actually subvoids, but most of them do not pass the 1σ

level.

2.6 Selection functions, boundaries and holes

Observational effects complicate the application of ZOBOV to real
data, e.g. from a galaxy redshift survey. This section contains some
speculations about how to deal with these effects.

ZOBOV can naturally accommodate a selection function that varies
with position, φ(x). All one needs to do is to divide the density of
each particle/galaxy at xi byφ(xi ) (van de Weygaert & Schaap 2008).
For void finding, densities estimated with the DTFE (defined between
particles) may in general be preferable to what ZOBOV uses, the VTFE

(defined at particles). However, a variable selection function is more
natural to correct for using the VTFE.

ZOBOV is designed for a periodic simulation but other boundary
situations can be handled. If an isolated set of particles is analysed
without any modifications, ZOBOV will still correctly determine the
adjacency of each particle. However, particles on the edge could
have arbitrarily large Voronoi volumes, and thus many spurious
density minima will occur on the edges. A trivial way of preventing
this is to set all edge particles’ densities to a value higher than
any density in the interior. Another way is to add a buffer zone of
particles at, for example, the mean density around the data set. This
will inhibit edge effects for densities estimated for particles a bit
below the surface, as well. However, there is some ambiguity in
how to make this buffer.

Holes and significantly non-convex boundaries in the data are
perhaps the most difficult problem for ZOBOV. A simple way of
dealing with the problem might to put particles in the holes, Poisson
sampling at the mean density inside them. The density could also
be interpolated among neighbouring particles, perhaps an iterative
process. Or, perhaps optimally, it could be estimated through a con-
strained realization (Bertschinger 1987; Hoffman & Ribak 1991;
Zaroubi et al. 1995; van de Weygaert & Bertschinger 1996). With
any sort of Poisson hole filling, it would be wise to try several real-
izations.

3 R E S U LT S

Here, I discuss the application of ZOBOV to dark matter particles
from a cube 60 h−1 Mpc on a side (hereafter, the ‘full cube’) taken
from the Millennium simulation. Aspects of these results in the

Figure 5. A 5 h−1 Mpc-wide slice through the inner 40 h−1 Mpc cube
analysed for the AAVFCP. This and the following figure were produced
using Nick Gnedin’s IFRIT software, available at http://home.fnal.gov/
∼gnedin/IFRIT/.

inner 40 h−1 Mpc cube (hereafter, the ‘inner cube’) can be found,
with direct comparisons to other void finders, in the AAVFCP paper.
To reduce the dependence on boundary conditions, only voids with
cores (minimum-density particles) in the inner cube were analysed
in the AAVFCP.

ZOBOV is designed for a periodic simulation. For the non-periodic
AAVFCP cube, a square lattice of particles at the mean density was
added to each face of the full cube, quite far away from the inner
cube (where the results are actually analysed).

ZOBOV detected a couple of orders of magnitude more voids in the
AAVFCP region than almost any other void finder. This is because
of the many low-significance voids, and subvoids, it detected;
see Table 1, and Fig. 8. The number of 5σ voids (29) is typical
of the number of voids detected by other void finders.

Figs 5 and 6 show the largest, and most significant, ZOBOV void
that has a core particle in the inner AAVFCP cube. There was actu-
ally a deeper void in the full cube, but its minimum-density particle
was on the outer edge, perhaps an artefact of the boundary condi-
tions used for the tessellation. It is this void, not the void shown in
the figures, that encompasses nearly the whole volume, as the most
significant ZOBOV void typically does.

The bottom panel of Fig. 6 shows the void in the top panel, trun-
cated as in Section 2.5.1, with a 5 σ probability threshold. It is also
the most probable extent of the void as described in Section 2.5.2,
with a caveat. Fig. 7 shows the extent significance curve for this
void, using two different fits of density contrast versus probability.
The solid curve uses the original fit, equation (1), for P(r) in equa-
tion (3). The minimum of this curve (showing the most likely extent)
is at i = 2, giving a tiny region around the central zone. There are
two explanations for this discrepancy between what ZOBOV and the
human eye pick out: density contrast alone is an inadequate quan-
tifier of void significance (as judged by the human eye); or, the fit
to the probability of void fakeness in equation (1) is inaccurate at
high r.
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Figure 6. The largest, and most significant, void VOBOZ found the inner
40 h−1 Mpc AAVFCP cube. Green, diffuse particles are in the void; black
particles are not. The large red dot is the core (minimum density) particle
in the void. The top panel shows the full void. The bottom panel shows the
void as truncated as described in Section 2.5.1, using a significance level of
5σ ; it is the same as the most probable extent of the void as described in
Section 2.5.2, if the ‘steeper fit’ in Fig. 7, equation (4), is used.

Even using equation (1), there is a sharp increase in the curve at
i = 200; the void extent at this point is shown in Fig. 6. For this
to be returned as the most probable extent, the probability of void
fakeness must be dramatically reduced by a factor of e351 at r = 4.5
(the density contrast reached at i = 200). A steeper fit that achieves
this is

P(r ) = exp[−5.12(r − 1) − 0.8(r − 1)4.7], (4)

Figure 7. Significances of possible void extents for the void shown in Fig. 6.
The most probable extent (a minimum on the curve) is at i = 2 using the
original fit to the void probability function, equation (1). To achieve a mini-
mum at i = 200 (the extent shown in the bottom panel of Fig. 6), a steeper
fit such as equation (4) must be used. The simulations used for Fig. 2 are too
small to probe the abundance in Poisson simulations of ZOBOV voids with as
high-density contrast as this void.

the fit used for the dashed line. Unfortunately, the Poisson simulation
used for Fig. 2 is not large enough to test the probability of such
rare, high density contrasts.

3.1 Lagrangian density distribution

The top panel of Fig. 8 is a scatter plot of density contrast r versus
the core (minimum) density ρmin, for voids in the AAVFCP region.
There are two clusters of points: one for ρmin < 0.2, about the nat-
ural density of a void in � CDM and a second at high density, ρmin

∼ 102.5. At first, the high-density group may be surprising, but all
of these voids have low-density contrasts. Only one of them barely
passes the 3σ level, even fewer than the expected number (10) of
3σ objects in a sample of 3765; this is the number of voids with
ρmin > 0.2. All highly significant voids above ∼3σ in density con-
trast are also physically significant with ρmin < 0.2. This lends cre-
dence to both significance measures.

The high-density cluster in the top panel of Fig. 8 appears to
be related to the high-density peak at ρ ≈ 102.5 in the probability
distribution P(ρ) of particle densities, shown in the bottom panel.
This peak is at approximately the fiducial density of virialization,
ρvir ≈ 200, so the particles in this peak typically reside in collapsed
structures. The high-density peak in P(ρ) is smaller in the inner cube
than in the full cube, and vice versa for the low-density peak at ρ ∼
1. This makes sense, since haloes are scarce in the inner cube, most
of which is occupied by a large void.

This P(ρ) is approximately a Lagrangian version of the Eulerian
counts in cells (CIC) statistic PCIC(N, V) (e.g. Szapudi, Meiksin
& Nichol 1996), which measures the distribution of the numbers
of particles N in fixed grid cells of volume V. Roughly, P(ρ) ∝
ρPCIC(N = ρV , V), since, for example, each cell containing three
particles will be counted once for PCIC(N = 3, V), but thrice in
P(ρ = N/V). CIC measurements do not have a high-density peak,
but they often have a significant high-density tail that, when mul-
tiplied by a factor of ρ (or N), may produce a peak. It would be
interesting, but beyond the scope of this paper, to model this high-
density peak in P(ρ) using, for example, the halo model.
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Figure 8. Top panel: for ZOBOV voids in the 40 h−1 Mpc AAVFCP region,
a scatter plot of the minimum density ρmin and the density contrast r (the
ratio of ρl, the density at which a void would merge with a deeper void,
and ρmin). This plot shows two populations, one that satisfies the ‘physical’
significance criterion, ρmin/ρ̄ < 0.2, and another that does not. The high-
density population contains only one void above 3σ , whereas 10 would
be expected from 3765 Poisson voids. Bottom panel: probability density
functions (PDF’s) of particle densities in the AAVFCP region. The dashed
black curve shows the PDF from particles in the full 60 h−1 Mpc box; the
dotted blue curve uses only particles in the inner 40 h−1 Mpc box. The inner
box has fewer haloes per unit volume; this explains the lower high-density
peak, and higher low-density peak, in the inner box. The solid green curve
shows the PDF of void minimum-density particles. Peaks in the PDF using
the full particle set (e.g. the dashed blue curve) seem to give sharper peaks in
the PDF of void core-particle densities (the green curve) at slightly smaller
densities.

4 D I S C U S S I O N

ZOBOV has a few unique, appealing features, that I believe are worth
keeping in mind as cosmologists develop a standard definition of
voids. These features are as follows.

(i) Parameter independence. The set of voids ZOBOV returns for a
set of particles depends on no parameters, based on a simple defi-
nition of a void: a depression around a density minimum. However,
the word ‘depression’ is also a bit vague; its definition for ZOBOV is
essentially the first few paragraphs of Section 2. These implemen-
tation choices are, in a sense, parameters.

(ii) Statistical significance measurement for voids. Void finding
is not a clear-cut business, so ZOBOV does not return a clear-cut set
of results. Instead, it measures a probability that each void is real,
based on how likely the void’s density contrast occurs in a Poisson
realization. Thus approach, I believe, is philosophically satisfying,
but the raw results it returns are not necessarily straightforward to
analyse. To get a definitive set of disjoint voids, one can set a signif-
icance level at which to trust that a void is real. Alternatively, ZOBOV

has a mechanism to determine the most probable extents of voids.
There could be ways of analysing the raw, parameter-free ZOBOV

results, as well. For example, a void probability function measure-
ment could include all voids, but weight them by their probability of

being real. ZOBOV is not the only void finder that employs a statistical
significance test (e.g. Kauffmann & Fairall 1991).

(iii) Hierarchical voids. Just as haloes contain subhaloes, voids
contain subvoids. ZOBOV naturally accommodates this fact, detecting
subvoids as well as voids. Again, a hierarchy of voids does not
lend itself to straightforward analysis using traditional methods, but
methods could be devised which take advantage of this hierarchical
information.

There are also some areas that could benefit from further study
or improvement.

(i) Using the (dual) Delaunay instead of the Voronoi tessellation
for density estimation. The DTFE and VTFE (based on these two tes-
sellations, respectively) give natural density estimates from a set of
particles (Schaap & van de Weygaert 2000; Pelupessy, Schaap &
van de Weygaert 2003; Schaap 2007). WVF (Platen et al. 2007), for
instance, uses the DTFE instead of the VTFE. Both the DTFE and VTFE

have no free parameters, and have infinite spatial resolution, up to
machine precision. Arguably, they give the most local possible den-
sity estimates with meaningful information. The VTFE defines densi-
ties at each particle, and thus is natural for finding maxima in a set of
particles. This is why we used it for the halo finder VOBOZ. However,
the DTFE is a more natural choice for finding minima, since it defines
densities in cells between particles. For a well-sampled density field
as in an N-body simulation, the differences are likely negligible, but
for sparse (e.g. galaxy) particle samples, ZOBOV should ideally use
the DTFE. On the other hand, the VTFE could be preferred when faced
with a variable selection function, which it handles more naturally
than the DTFE does.

(ii) The definition of statistical significance for a void. ZOBOV

judges the statistical significance of a void v by the contrast between
the lowest density on a ridge beyond which is a deeper void, and v’s
minimum density. This definition is simple and easy to calculate,
and the probabilities it returns compare favourably to what visual
inspection suggests.

However, there are other possible significance measures. For ex-
ample, the algorithm could be run several times on different Monte
Carlo realizations of the density field, formed by moving (‘jittering’)
all particles around in some fashion corresponding to the noise in
the system. If the limiting noise is from particle discreteness (which
is not usually the case for actual data), a natural way to jitter the
particles would be to move each particle to a random place in its
initial Voronoi cell. For N-body simulations, a jitter according to
a measure of the spatial resolution (e.g. the gravitational softening
length) might be more appropriate. For 3D galaxy redshift surveys,
the main uncertainties are probably the distances inferred from red-
shifts, and the handling of boundary conditions and holes. For a
large data set like an N-body simulation, this Monte Carlo approach
would probably take prohibitively long, but for a more manageable
data set like a galaxy catalogue, estimating significances in this way
might be tractable.

Another finding that emerged from this study is a broad, high-
density peak in the logarithmically binned probability distribution
of dark matter particle densities, at ρ ≈ 103ρ̄, as shown in Fig. 8.
It would be interesting to see whether this feature can be modelled
successfully using the halo model of large-scale structure.

The code for ZOBOV, packaged with the halo-finding algorithm
VOBOZ, is available at http://ifa.hawaii.edu/∼neyrinck/voboz. The
new edge detection methods developed for ZOBOV, described in Sec-
tion 2.5, make VOBOZ more attractive than previously for finding
clusters in general point sets, such as galaxy catalogues.
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Schaap W. E., van de Weygaert R., 2000, A&A, 363, L29
Shandarin S., Feldman H. A., Heitmann K., Habib S., 2006, MNRAS, 376,

1629
Sheth R. K., van de Weygaert R., 2004, MNRAS, 350, 517
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González E., Pons-Borderia M., eds, Data Analysis in Cosmology.
Springer-Verlag, Berlin (arXiv:0708.1441)

Zaroubi S., Hoffman Y., Fisher K. B., Lahav O., 1995, ApJ, 449, 446

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 386, 2101–2109


