Towards 3D Spectra of Galaxies

Ching-Wa Yip Johns Hopkins University

With Thanks To

- Alex Szalay
- Rosemary Wyse
- László Dobos
- Tamás Budavári
- Istvan Csabai
- Michael Mahoney (Math @ Stanford)
- Emmanuel Candes (Math @ Stanford)
- Vivian Wild

Institute for Data Intensive Engineering and Science

- Samuel Carliles (CS @ JHU)
- Brice Ménard
- Guangtun Zhu
- Tim Heckman
- Robert Kennicutt
- Daniela Calzetti
- Andrew Connolly

Critical Questions

- How much normal matter are present in galaxies?
- What do they tell us about galaxy formation?

Dark Energy 72% Dark Matter 23% Normal Matter 5%

Early Universe

Spectra are the keys to Stars, Gas and Dust in Galaxies

Absorption and Emission Lines

Measure Dust & Light in Galaxies

(1D) Inclination-Dependent Composites
2D Composites
3D Composites
3D and High Definition

From Light to Matter Date Compression

- Large Scale Galaxy Permieter Estimation

SDSS III

Current & Future Spectroscopic Surveys

- Multiplexing: many objects at a time (SDSS, LAMOST, MaNGA, PFS)
- 2D In Situ: as a function of projected 2D position on galaxies (Integral Field Units, CALIFA, SAMI, MaNGA)

CALIFA

Subaru PFS

LAMOST

Integral Field Spectroscopy (or "3D" Spectroscopy)

Ealet et al. 2008

Inclination Information

Hubble Deep Field

Galaxies are located at various inclinations & distances

From SDSS JPEG Image Cutout tool.

Why 3D Spectrum

- Galaxies are 3D.
- Impact across many topics:
 - Radial Variance: Galaxy Evolution
 - Inclination Variance: Dust , Galaxy Properties, Cosmology

Galaxy Evolution at Sub-galactic Scales

Reconstruction of Galaxy Spectral Templates

- 1D emissivity: f(galaxy center; b/a), inclination variation at galaxy center (Yip et al. 2010)
- 2D emissivity: f(x, y; b/a) by Drizzle2D algorithm (Yip et al. 2014 in prep)
- 3D emissivity: f(x, y, z) by Drizzle3D algorithm (future)

13

.

Sidewiki 🔹 🎲 Bookman

n Check 7

Sloan Digital Sky Survey

Photometric + Spectroscopic Surveys

- 11,000 square degree footprint (DR7)
- 5.9 ×10⁸ *u*, *g*, *r*, *i*, *z* photometry
 - 1.6 ×10⁶ fiber spectra
- Phases
 - SDSS I (2000-05)
 - SDSS II (2005-08)
 - SDSS III (2008-14)
 - SDSS 4 (2014-20)
- Data are public
- Web interfaces for data download & exploration
 - SkyServer, DAS, etc.

e 7 (OR7) website for p in DR7 astronomers on this site irophems More...

> Elelp Getting Started FAQ How To Glossary Scheme Browser

Galaxy light sampled by the SDSS spectroscopy

- SDSS offers fiber spectra at 3800-9200 Å, 69 km/s resolution.
- A fiber projects 3 arcsec-diameter area on the sky.

The central 3 arcsec of a galaxy.

Sample: Disk Galaxies in SDSS DR6

- Disk dominated (bulge fraction < 0.1, u r < 2.4)
- Star forming
- Flux Limited r < 17.7
- Redshift = 0 0.2

Dynamical Range of Inclination

• Why are we missing galaxies at extreme inclination angles? (see also Shao et al. 07; Unterborn & Ryden 08)

Inclination Dependency of Extinction in Stellar Continuum

Edge-on galaxies show higher extinction than face-on galaxies.

The best-fit empirical extinction law is:

$$A_{x}(b / a) - A_{x}(1) = \eta_{x} \log \frac{4}{10} (b / a)$$

Optical Thickness of Stellar Continuum of Galaxies

- Best-fit theoretical model is the slab model.
- Best-fit face-on extinction is 0.2 mag (SDSS g band).

Tie Extinction to Inclination

$$\tau_{\lambda} (H_{\alpha} / H_{\beta}) \propto \tau_{\lambda} (b / a)$$

u(0.1) - u(1) 1.1 mag g(0.1) - g(1) 0.8 mag r(0.1) - r(1) 0.4 mag i(0.1) - i(1) 0.2 mag z(0.1) - z(1) 0.0 mag

Yip, Szalay, Carliles, et al. 2011

Broader Impact of Inclination Effect

- Inclination changes the observed color and luminosity of galaxies.
- Affected galaxy properties:
 - Galaxy Count
 - Galaxy Size
 - Galaxy Luminosity Function
 - Photo-z
 - Derived parameters

Galaxy Count

Galaxy Size

 Disk galaxies appear larger when inclined:

$$\log_{10} (r_{\text{eff}}^{b/a}) = \log_{10} (r_{\text{eff}}^{1}) - \beta_r \log_{10} (b/a)$$

 Found also in previous studies (e.g., Huizinga & van Albada 92, Mollenhoff et al. 2006, Maller et al. 09)

Why disk galaxies appear larger when inclined

• Because of the presence of extinction radial gradient in the galaxies.

Inclination Effect on Photo-z

Yip, Szalay, Carliles, et al. 2011

Inclination Effect on Observed Colors

 Color-color diagram of galaxies before and after inclination correction (g-r vs r-i):

Drizzle2D Algorithm: Radial Reconstruction per b/a bin using fiber spectra

r(fiber)/reff = 0.6

r(fiber)/reff = 1.1

Drizzle2D Algorithm: Radial Reconstruction per b/a bin using fiber spectra

Extinction at Galaxy Center (r/r_{eff} = 0.23): 1.9 mag

Yip et al. 2014 in prep.

Radial Profile of Galaxy (b/a = 0.9 - 1.0)

Galaxy Center $r/r_{eff} = 0.23$

Galaxy Outer Region $r/r_{eff} = 1.15$

Future: Drizzle3D Algorithm

- Deproject 2D composites f(x, y; b/a) to get 3D f(x, y, z)
- Much like 3D human body reconstruction using X-ray CAT scans
- Key components:
 - 3D Galaxy Mesh & Tessellation Scheme
 - Galaxy opacity profile
 - Parameterization of voxel spectra
 - Principal Component Analysis
 - Flux convergence in individual voxels
 - Interpolation for higher-than-native resolution
 - With Emmanuel Candes @ Stanford
 - 3D Visualization

Parameterization of Spectra using Principal Component Analysis

• Compress datacube from 78x73x1700 to 78x73x5.

NGC 5409 SDSS image.

Top 5 PCA Eigencoefficient map.

IFU data from CALIFA DR1: 3650 – 4840 Å at 0.7 Å / pixel. Husemann et al. 2012, Sanchez et al. 2012, Walcher et al. in prep.

Challenges in Probing Galaxies' Properties

- Many Objects/Spectra (Big Data)
- Many Parameters
- Noisy Data

SDSS & BOSS (z = 0 - 0.7, 2.5M galaxies) LAMOST (z = 0 - 0.2, 10M galaxies) Prime Focus Spectrograph (z = 1 - 2, 200K galaxies)

Data Analysis using Database

MS SQL Server. Source: Alex Szalay

Probing Galaxies' Properties

- Model Fitting of Spectra (SDSS/JHU Catalog: Kauffmann, Heckman, Tremonti, Chen, et al.)
- Empirical Relations

w Paramotors)

N-Dimensional Model Grid (Yip 2010)

Informative Wavelength Regions using CUR (Yip, Mahoney, Szalay, et al. 2014 AJ in press)

(Many Objects)

Probing Galaxies' Properties (Many Objects)

Brute force Bayesian approach:

- N = 1 Million
- M = 4,000
- P = 4
- T = 20 years

Galaxy Spectra Pixels Parameters CPU time

INDEX DEFINITIONS

	Name	Index Bandpass	Pseudocontinua	Units	Measures	Error ¹	Notes
01	CN1	4143.375-4178.375	4081.375-4118.875	mag	CN, Fe I	0.021	
02	CN2	4143.375-4178.375	4085.125-4097.625	mag	CN, Fe I	0.023	2
03	Ca4227	4223.500-4236.000	4212.250-4221.000	Å	Ca I, Fe I, Fe II	0.27	2
04	G4300	4282.625-4317.625	4267.625-4283.875	Å	CH, Fe I	0.39	
05	Fe4383	4370.375-4421.625	4360.375-4371.625	Å	Fe I, Ti II	0.53	2
06	Ca4455	4453.375-4475.875	4447.125-4455.875	Å	Ca I, Fe I, Ni I, Ti II, Mn I, V I	0.25	2
07	Fe4531	4515.500-4560.500	4505.500-4515.500 4561.750-4580.500	Å	Fe I, Ti I, Fe II. Ti II	0.42	2
08	Fe4668	4635.250-4721.500	4612.750-4631.500 4744.000-4757.750	Å	Fe I, Ti I, Cr I, Mg I, Ni I, C ₂	0.64	2
09	$\mathbf{H}\boldsymbol{\beta}$	4847.875-4876.625	4827.875-4847.875 4876.625-4891.625	Å	$H\beta$, Fe I	0.22	3
10	Fe5015	4977.750-5054.000	4946.500-4977.750 5054.000-5065.250	Å	Fe I, Ni I, Ti I	0.46	2,3
11	Mg1	5069.125-5134.125	4895.125-4957.625 5301.125-5366.125	mag	MgH, Fe I, Ni I	0.007	3
12	Mg ₂	5154.125-5196.625	4895.125-4957.625 5301.125-5366.125	mag	MgH, Mg b, Fe I	0.008	3
13	Mg b	5160.125-5192.625	5142.625-5161.375 5191.375-5206.375	Å	Mg b	0.23	3
14	Fe5270	5245.650-5285.650	5233.150-5248.150 5285.650-5318.150	Å	Fe I, Ca I	0.28	3
15	Fe5335	5312.125-5352.125	5304.625-5315.875 5353.375-5363.375	Å	Fe I	0.26	3
16	Fe5406	5387.500-5415.000	5376.250-5387.500 5415.000-5425.000	Å	Fe I, Cr I	0.20	2,3
17	Fe5709	5698.375-5722.125	5674.625-5698.375 5724.625-5738.375	Å	Fe I, Ni I, Mg I Cr I, V I	0.18	2
18	Fe5782	5778.375-5798.375	5767.125-5777.125 5799.625-5813.375	Å	Fe I, Cr I	0.20	2
19	Na D	5878.625-5911.125	5862.375-5877.375 5923 875-5949 875	Å	Na I	0.24	
20	TiO1	5938.375-5995.875	5818.375-5850.875 6040.375-6105.375	mag	TiO	0.007	
21	${\rm TiO}_2$	6191.375-6273.875	6068.375-6143.375 6374.375-6416.875	mag	TiO	0.006	

Lick Indices

Worthey et al. 94; Trager et al. 98

CUR Matrix Decomposition (Mahoney & Drineas 2009): Best Rank-k Approximation of Data Matrix

CUR approximates data matrix A as such: $min ||A - CUR||_F$

Identifying Objective Wavelength Regions using CUR Matrix Decomposition

- Simple Stellar Populations (SSP) defined by stellar age (0 20 Gyr) and stellar metallicity (Z = 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05).
 - Bruzual and Charlot 2003
 - Absorption Lines Only, No Emission Lines
- 2 configurations:
 - Lick: 3800-6400 Å with 9 Å resolution
 - SDSS: 3450-8350 Å with 3 Å resolution

9Å Resolution

4000 4500 5000 5500 6000 Wavelength (Å)

3Å Resolution

PCA Eigenspectra of 1st Informative Region

Larger a1 implies: Younger stellar populations

Larger a2 implies: Younger, More Metal Rich OR Older, Less Metal Rich

Stellar Age Sensitivity of Wavelength Regions

Stellar Metallicity Sensitivity of Wavelength Regions (Seeing Age-Metallicity Degeneracy!)

Brute force Bayesian approach: N = 1 Million M = 4,000 P = 4 T = 20 years **2 weeks!** Brute force Bayesian approach: Galaxy Spectra Pixels Parameters CPU time

Model Stellar Light in Galaxy Spectra

• We model each galaxy spectrum by a linear combination of Single Stellar Populations (Tinsley 70'):

Galaxy Composition through N-D Parameter Estimation

- N–D hypercube
- Multi-linear interpolation to achieve arbitrary computational resolution in parameters

 (x_1, y_1)

$$(x_{3}, y_{3}) \qquad (x_{2}, y_{2})$$
Length = 1
$$(x, y) \quad \delta x_{0}$$

 (x_0, y_0)

2-D: $f(x, y) = f(x_0, y_0) * (\delta x_0 * \delta y_0) + f(x_1, y_1) * (\delta x_1 * \delta y_1) + f(x_2, y_2) * (\delta x_2 * \delta y_2) + f(x_3, y_3) * (\delta x_3 * \delta y_3)$

N-D: $f(x) = \sum f(zi) \prod (1 - |xj - zij|)$

where *zi* are the neighboring parameter points

Mean Square Error vs. Parameter Grid Resolution

- Mean square error of the parameter estimates decreases with grid resolution.
- Improvement is simultaneous for all parameters.

e-folding time of star formation

Dust reddening

N-D Parameter Estimation on Spectra

4D stellar population model

- On-the-fly generation of 300,000 model spectra
- Parameter uncertainties are estimated on object-to-object basis
- 10 minutes (SDSS spectral resolution 69km/s)

Age of the oldest stars = 13 Gyr

Metallicity by mass = 0.36 solar

e-folding time of star formation = 2 Gyr

E(B-V) = 0.25 mag

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

- 4m segmented telescope, 5° FOV (the Moon spans 0.5°)
- 4,000 fiber spectra into 16 spectrographs
- 10 million fiber spectra, 10x more than SDSS

Spectral resolutions:

medium-low R = 1000 - 2000

medium R = 5000 - 10000

> Xinglong Station, 180 km north of Beijing

Subaru Prime Focus Spectrograph (PFS; 2017)

- High redshift version of SDSS
- 2,400 fiber array, 1.3° FOV
- 200,000 galaxy spectra (1.4 < z < 2.2)
- 140,000 Lyα emitters (2 < z < 7)
- 50,000 QSOs (3 < z < 7)

```
Spectral resolutions:
```

3800-6700 Å R = 1900 6500-10000 Å R = 2400 9700-13000 Å R = 3500

Galaxy Parameters from Prime Focus Spectrograph (PFS) Spectra

- 25,000 model spectra simulation
- Realistic star formation history
- 5 model parameters
- 18 derived parameters
- Focus on Dn(4000)

Yip & Heckman, et al.

Cosmic Evolution of Dust and SFR using Inclination Method

Measure Dust & Light in Galaxies
Radial Dependency: Galaxy Evolution
Inclination Dependency: True Color/Luminosity of Galaxies
3D Spectra marry both

From Light to Matter - Objective wavelength regions: compress date

- N-Dimensional galaxy