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Human are Great Pattern Recognizers

e Sensors: look, smell, touch, hear
 Computation: 100 billions (10!) neurons

Cerebrum

Estimated 300 million
pattern recognizers
(How to create a mind,
Kurzweil)
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Machine Learning

 We want computers to perform tasks.

e |tis difficult for computers to “learn” like the
human do.

* We use algorithms:
— Supervised, e.g.:
* Classification
* Regression
— Unsupervised, e.g.:

* Density Estimation
e Clustering

 Dimension Reduction
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From Data to Information

 We don’t just want data.

e We want information from the data.

Information

e

Database

Machine Learning

 Not Data Mining by
Human
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Expert could be Biased
(Thinking Fast and Slow, Kahneman)
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available information, including the weather. Ashenfelter's formula is ex-
tremely accurate—the correlation between his predictions and actual prices
is above 90,

wWhy are experts inferior to algorithmse One reason, which Meehl sus-
pected, is that experts try to be clever, think outside the box, and consider
complex combinations of features in making their predictions. Complexity
may work in the odd case, but more often than not it reduces validity. Simple
combinations of features are better. Several studies have shown that human
decision makers are inferior to a prediction formula even when they are
given the score suggested by the formula! They feel that they can overrule
the formula because they have additional information about the case, but
they are wrong more often than not. According to Meehl, there are few
circumstances under which it is a good idea to substitute judgment for a
formula. In a famous thought experiment, he described a formula that pre-
dicts whether a particular person will go to the movies tonight and noted
that it is proper to disregard the formula if information is received that the
individual broke a leg today. The name “broken-leg rule” has stuck. The
point, of course, is that broken legs are very rare—as well as decisive.

Another reason for the inferiority of expert judgment is that humans
are incorrigibly inconsistent in making summary judgments of complex

information. When asked to evaluate the same information twice, they fre-
1r16/2014 JHU Intersession Course - C. W. Yip ’
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Applications of Unsupervised Learning

Consumer Clustering
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Basic Concepts in Machine Learning

Label and Unlabeled data
Datasets: training set and test set
~eature space

Distance between points

Cost Function (or called Error Function)
Shape of the data distribution

Outliers



Basic Concepts in Machine Learning

* Label and Unlabeled data
e Datasets: training set and test set
* Feature space

* Distance between points

e Cost Function (or called Error Function)
* Shape of the data distribution

* Qutliers
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Feature Space

The raw data may not be immediately suitable for pattern recognition.

Feature space is spanned by the resultant data after pre-processing the
raw data.

The data usually N points (or vectors), each has M variables (or
components).

Galaxy Spectrum: Raw Data Galaxy Spectrum: After Pre-processing
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* Remove systematics.
* Resample the number
of wavelength bins (M)
to be 4000.

4000 5000 6000 7000 8000 4000 5000 6000 7000 3000
Wavelength in Angstrom Wavelength in Angstrom

atics:

There are system
e Cosmicrays
e Sky lines
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Intuition to High-Dimensional Data:
N points, M components

N =10, M=3 N, M
Z Z
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Unlabeled vs. Labeled Data

* Labeled data has an extra “label” compared
with the unlabeled.

* Data labeling can be expensive (e.g., human
expert).



Labeled Data

A
X X
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Unlabeled Data
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Galaxy Images are Unlabeled Data

1/16/2014

(weII before Labelmg)
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Galaxy Zoo Project

 Web users classify galaxy morphologies.
* Use majority vote to decide on the answer.
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Edwin Hubble's
Classification .. = .o
Scheme - "

Ellipticals \ -
EO E3
o —@

E5 E7

EO, E2, SO, ... etc. are the labels.
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Galaxy Images are Unlabeled Data
(weII before Labelmg)
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Digit Recognition
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Distance between 2 Points in Space

The set of data points spans a space.
We can measure the distance between 2 points in
such space.

— E.g., Chi-sg measures the sum of distance squared
between a point and model.

If the points are close to each other:
— They are “neighbors” with similar features.
The best definition of distance (to yield concepts

like “very close” and “far away”) is data-
dependent.



Cost Function

* |n many machine learning algorithms, the idea is
to find the model parameters @ which minimize
the cost function J(0):

AN i )2
J(0) = E;(model(data ) — data )

m is the size of the dataset or the training set.

 Thatis, we want model as close to data as
possible.

* Note that model depends on 8.



| RGui {64-bit)

History Resize  Windows

:

Recall: LSQ Fitting

[~ R Console O] x|

> H#Generate 100 random points

> n «<- 100

> ® «<— runifin, -1.0, 1.0)

= m <— 0.5

oy o<4—mw * x4+ runifin, 0.0, 0.1)

= plotix, ¥, xlim = ci-1, 1), ylim = (-1,
> #least sguare fit to the data points
> #linear model: ¥ = m * X + ©

= fitresult <- lmi(y ~ X

= fitresult

Call:

lmiformala = v ~ =)

Coefficients:
[ Intercept) e
0.05z264 0.50z82

> #Add the best-fit straight line

» abhline(fitresult)
>
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History Resize  Windows
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Recall: LSQ Fitting
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Distance between Points is Non-trivial:
“S Curve”

3D Space 2D Embedding Space
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(Vanderplas & Connolly, 2009)
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Unsupervised vs. Supervised Learning

* Unsupervised:
— Given data {x!, x4, x3,---, x™} find patterns.

— The description of a pattern may come in the form
of a function (say, g(x)).

e Supervised:

— Given data {(x1, y1), (x%,y%), (x3,¥3), -+,
(x™, y™)} find a function such that f(x) = y.

— y are the labels.



Some Areas in Unsupervised Learning

* Density Estimation
— Kernel Density Estimation
— Mixture of Gaussians

* Clustering
— K Nearest Neighbor

* Dimension Reduction
— Principal Component Analysis (Linear Technique)
— Locally Linear Embedding (Non-Linear Technique)



Unsupervised Learning: Find Patterns

X2

1/16/2014

in the Unlabeled Data
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Unsupervised Learning: Find Patterns
in the Unlabeled Data

X2




Basis Function

e Basis function allows us to parameterize the
data in some handy or/and meaningful ways.

 The decomposition of a data point into basis
function is usually quick.

 Examples:
— Gaussian functions
— Kernel functions

— Eigenfunctions (such as “Eigenspectra” in
Astronomical Spectroscopy)



Density Estimation:
Kernel Density Estimation
* Approximate a distribution by the sum of
kernels (K’s) of various bandwidths (h).
* Properties of kernel:

* K is aprobabilty density function, K(u) > 0 and f_oooo K(uw)du = 1.
* K is symmetric around zero: K(—u) = K(u)
* (Not Always) K(u) =0 for |u|] > 1



Example Kernel Functions K(u)

Triangular kernel

1.2 —
| ~
0.8 —
kw |\
0.4 — / \
0-0 I I T I I
—2 -1 0 1 2
Biweight kernel
u
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Cosine kernel
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Triweight kernel
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(Dekking et al. 2005)



Constructing the Kernel Density

Estimate

mssmtulfsssssshssdasssasssanms i id s —

Kernel and scaled kernel
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Shifted kernel

Kernel density estimate

n

Note joof(u)du =1




Luminosity Function of Nearby SDSS
Galaxies
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(Blanton et al. 2003)




Number/Total Number

Color Distribution of Nearby Galaxies
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(Yip, Connolly, Szalay, et al. 2004)
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Principal Component Analysis

* Perhaps the most used technique to
parameterize high-dimensional data.

e Best for linear data distribution.

 Many applications in both academia and
industry: dimension reduction, data
parameterization, classification problems,
image decomposition, audio signal separation,
..., etc.



High-Dimensional Data may lie in
Lower-Dimensional Space (or
Manifold)

N points, M components

Z

Y

N,

7

> i

X

PCA finds the orthogonal directions in the data space
which encapsulate maximum sample variances.

1/16/2014 JHU Intersession Course - C. W.Yip



1/16/2014

High-Dimensional Data may lie in
Lower-Dimensional Space (or
Manifold)

N points, M components

Z
2"d Principal Component
\ 15t Pfincipal Component
" >
“x RM

PCA finds the orthogonal directions in the data space
which encapsulate maximum sample variances.

A principal component is also called
Leigenvector,ar eigenfunction.

—




High-Dimensional Data may lie in
Lower-Dimensional Space (or
Manifold)

N points, M components

Z
2"9 Principal Component
\ 15t Pfincipal Component
" >
“x RM
We reduce the dimension PCA finds the orthogonal directions in the data space
of the problem from M to 2. which encapsulate maximum sample variances.

A principal component is also called

1/16/2014 Leigenvectar,ar eigenfunction.

—




Properties of PCA

PCA decomposes the data into a set of eigenfunctions.
The eigenfunctions are orthogonal (perpendicular) to each
other:

— The dot product between two eigenvectors is zero.
The set of eigenfunctions maximize the sample variance of

the data. Therefore, the data can be decomposed into a
handful of eigenfunctions (for linear data distribution).

For non-linear data, PCA may fail (i.e., we need many orders
of eigenfunctions).

In galaxy spectroscopy, the basis functions are called
“eigenspectra” (Connolly et al. 1995).



PCA Eigenspectra (eix) Representation
of Galaxy Spectra

fk = ZiaieiK

(i runs from 1 to
the number of eigenspectra)

Minimize reconstruction error with respect to a;’s:

X% = wax (fx — Zi aieik)z

Get the weights for each basis function:

(Connolly & Szalay 99)



Eigenspectra of Nearby Galaxies
(SDSS: N =170,000; M = 4000)
) LWMT&W W

00 ‘“ M\TLW 7 lwww Nty
o M a i
B WW [ S
E 004 bbb e e :_::I::}m” ::“‘::_-0.04
Q 0.04 l sth + Sth 0.04
(%}
?D 00 \TWWJ\\H i’ MM MWJ_‘,\’/ 0.00
. \ /
3 -0.04 ”" - —0.04
X -0.08 - : 08
= o
L J MLV- ﬂ‘ i h 4
0 - wy W .'\‘JJ MFT A WM W\\’ 0
WJ
| | g /"‘ ' |
Ww}” Mol
003 | ' ] - 003

1/16/2014 JHﬁAI)ntersession Course - C. \/\}.‘(Wp Wave|ength (A)



PCA as a way for Signal Separation

* The basis functions has physical meanings.
Hence each order (or called “mode”) of
function can be considered as a signal.

* |[n PCA, the basis functions are orthogonal.
They point to different direction in the data
space and are statistically independent.



Eigenspectra of Half a Million Galaxy
Spectra

* 2nd mode: galaxy type (steepness of the spectral slope)

0.04F
002 : Lo
0.00F

flux density

—0.02 Y|

~0.04}

4000 5000 000 /000 8000
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Eigenspectra of Half a Million Galaxy

Spectra

* 39mode: post-starburst activities (stronger the absorptions, weaker the

Ho)

0.04F it

0.07

flux density

—0.02

—0.04
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Image Reconstruction

Original Reconstruction using 50 Eigenfaces

(Everson &
Sirovich 1995)
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Matrix Representation of Data

* Many datasets are made up with N objects
and M variables.

* Matrix provides a handy way to represent the
data.

 An added advantage is that many algorithms
can be expressed conveniently in matrix form.



Example:
Size M x N Data Matrix for Galaxy Spectra

A;j = Flux at the ith wavelength for the jth galaxy

Galaxy ID

(4 A\
All A12 A13 AlN

A — g’ Ay Ay Az - Agy
* Au1 Avz Auz - Amn

* PCA in matrix notation: see handout.




Compressing the Object Space:
CUR Matrix Decomposition

* [n PCA, the number of components in the data
vectors remain intact.

* CUR Matrix Decomposition provides a
dramatically new way to compress big data.
This approach compresses the variable space:

— The number of components in the data vectors
decreases.



Some Wavelengths are More Informative:
Leverage Score per Each Variable

Sample Variance Sparsity

t Flux(A,)

Flux(,)

Flux(},) Flux(,)
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Galaxy ID

(

CUR Matrix Decomposition
(Mahoney & Drineas 2009)

Wavelength Selected Wavelength
\ 4 D Selected Galaxy ID

A C

|
Galaxy ID

Selected Wavelength
w
Selected Galaxy ID

CUR approximates data matrix:

min || A—CUR | |;

Wavelength

\

(‘

R




Frobenius Norm

A matrix norm is a number for representing the amplitude
of a matrix.

* The Frobenius norm is defined as follows:

N

M
IAllF = ZZ| l]|2

=11i=1
\

* |n CUR Matrix Decomposition, the matrix A is the
difference between the data matrix and its approximated
matrix. The Frobenius norm therefore measures the
“distance” between the two matrices.




Find Important Regions in
Multi-Dimensional Data:
Galaxy Spectra

4000 5000 ©000 /7000 8000
Wavelength (A)
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Discussion of Jan 7 Homework

* Total number of pixels in the CCD = 1024 x
1024 pixels = 1,048,576 pixels ~ 1 MPixels.

* GAIA needs 10°/60/60/24/365 years = 31.7
yvears =31 years 8 months ~ 32 years.



