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Human are Great Pattern Recognizers 

• Sensors: look, smell, touch, hear 

• Computation: 100 billions (1011) neurons 

Estimated 300 million 
pattern recognizers 
(How to create a mind,  
Kurzweil) 
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Machine Learning 

• We want computers to perform tasks. 
• It is difficult for computers to “learn” like the 

human do. 
• We use algorithms: 

– Supervised, e.g.: 
• Classification 
• Regression 

– Unsupervised, e.g.: 
• Density Estimation 
• Clustering 
• Dimension Reduction 
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From Data to Information 

• We don’t just want data. 

• We want information from the data. 

Sensors Information Database 

Machine Learning 
 
• Not Data Mining by 
Human 
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Expert could be Biased 
(Thinking Fast and Slow, Kahneman) 
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Applications of Unsupervised Learning 

Consumer Clustering 

Human Network Analysis 

Galaxies Grouping 

and more… 
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Basic Concepts in Machine Learning 

• Label and Unlabeled data 

• Datasets: training set and test set 

• Feature space 

• Distance between points 

• Cost Function (or called Error Function) 

• Shape of the data distribution 

• Outliers 
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Feature Space 

• The raw data may not be immediately suitable for pattern recognition. 
• Feature space is spanned by the resultant data after pre-processing the 

raw data. 
• The data usually N points (or vectors), each has M variables (or 

components). 

Galaxy Spectrum: Raw Data  Galaxy Spectrum: After Pre-processing  

There are systematics: 
• Cosmic rays 
• Sky lines 

• Remove systematics. 
• Resample the number 
of wavelength bins (M)  
to be 4000. 
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Intuition to High-Dimensional Data: 
N points, M components 
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Unlabeled vs. Labeled Data 

• Labeled data has an extra “label” compared 
with the unlabeled. 

• Data labeling can be expensive (e.g., human 
expert). 
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Labeled Data 
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Unlabeled Data 

 

Data Points 

𝑥1 

𝑥2 
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Galaxy Images are Unlabeled Data 
(well, before Labeling) 

(SDSS images of 
CALIFA DR1; 
Husemann et al. 2012, 
Sanchez et al. 2012, 
Walcher et al. in prep.) 
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Galaxy Zoo Project 

• Web users classify galaxy morphologies. 

• Use majority vote to decide on the answer. 
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Hubble’s Classification of Galaxy 
Morphologies 

E0, E2, S0, … etc. are  the labels. 
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Galaxy Images are Unlabeled Data 
(well, before Labeling) 

(SDSS images of 
CALIFA DR1; 
Husemann et al. 2012, 
Sanchez et al. 2012, 
Walcher et al. in prep.) 
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Digit Recognition 
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Distance between 2 Points in Space 

• The set of data points spans a space. 

• We can measure the distance between 2 points in 
such space.  
– E.g., Chi-sq measures the sum of distance squared 

between a point and model. 

• If the points are close to each other: 
– They are “neighbors” with similar features. 

• The best definition of distance (to yield concepts 
like “very close” and “far away”) is data-
dependent. 

1/16/2014 JHU Intersession Course - C. W. Yip 



Cost Function 

• In many machine learning algorithms, the idea is 
to find the model parameters 𝜽 which minimize 
the cost function 𝐽 𝜽 : 
 
 
 

     m is the size of the dataset or the training set. 
• That is, we want 𝑚𝑜𝑑𝑒𝑙 as close to 𝑑𝑎𝑡𝑎 as 

possible. 
• Note that 𝑚𝑜𝑑𝑒𝑙 depends on 𝜽. 

𝐽 𝜽 =
1

𝑚
 𝑚𝑜𝑑𝑒𝑙 𝑑𝑎𝑡𝑎𝑖 − 𝑑𝑎𝑡𝑎𝑖

2
𝑚

𝑖=1
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Recall: LSQ Fitting 
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Recall: LSQ Fitting 

Chi-sq is one example of cost function. 
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Distance between Points is Non-trivial: 
“S Curve” 

 

(Vanderplas & Connolly, 2009) 

3D Space 2D Embedding Space 

X’ 

Y’ 
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Unsupervised vs. Supervised Learning 

• Unsupervised: 

– Given data {𝒙1, 𝒙2, 𝒙3, ⋯, 𝒙𝑛} find patterns. 

– The description of a pattern may come in the form 
of a function (say, 𝑔 𝒙 ). 

• Supervised: 

– Given data {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3),⋯, 
(𝒙𝑛, 𝒚𝑛)} find a function such that 𝑓 𝒙 = 𝒚. 

–  𝒚 are the labels. 
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Some Areas in Unsupervised Learning 

• Density Estimation  

– Kernel Density Estimation 

– Mixture of Gaussians 

• Clustering 

– K Nearest Neighbor 

• Dimension Reduction 

– Principal Component Analysis (Linear Technique) 

– Locally Linear Embedding (Non-Linear Technique) 
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Unsupervised Learning: Find Patterns 
in the Unlabeled Data 

 

𝑥1 

𝑥2 
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Basis Function 

• Basis function allows us to parameterize the 
data in some handy or/and meaningful ways. 

• The decomposition of a data point into basis 
function is usually quick. 

• Examples: 
– Gaussian functions 

– Kernel functions  

– Eigenfunctions (such as “Eigenspectra” in 
Astronomical Spectroscopy) 
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Density Estimation: 
Kernel Density Estimation 

• Approximate a distribution by the sum of 
kernels (K’s) of various bandwidths (h). 

• Properties of kernel: 

• 𝐾 𝑖𝑠 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝐾 𝑢 > 0 𝑎𝑛𝑑  𝐾 𝑢 𝑑𝑢 = 1.
∞

−∞
 

• 𝐾 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑜𝑢𝑛𝑑 𝑧𝑒𝑟𝑜: 𝐾 −𝑢 = 𝐾 𝑢  
• (Not Always) 𝐾 𝑢 = 0 𝑓𝑜𝑟 𝑢 > 1 
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Example Kernel Functions K(u) 

 

(Dekking et al. 2005) 

𝐾( 𝑢 > 1) ≠ 0 

𝑢 

𝐾(𝑢) 
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Constructing the Kernel Density 
Estimate 

 

𝑓 =
1

𝑛ℎ
 𝐾

𝑢 − 𝑥𝑖

ℎ

𝑛
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Luminosity Function of Nearby SDSS 
Galaxies 

 

(Blanton et al. 2003) 

Magnitude of Galaxy (Dimmer) 
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Notice the height 
of the kernels 
actually vary, slightly 
different from the 
discussed kernel 
density estimation. 
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Color Distribution of Nearby Galaxies 

 

Color (Redder ) 
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(Yip, Connolly, Szalay, et al. 2004) 
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Principal Component Analysis 

• Perhaps the most used technique to 
parameterize high-dimensional data. 

• Best for linear data distribution. 

• Many applications in both academia and 
industry: dimension reduction, data 
parameterization, classification problems, 
image decomposition, audio signal separation, 
…, etc. 
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High-Dimensional Data may lie in 
Lower-Dimensional Space (or 

Manifold) 
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N points, M components 

PCA finds the orthogonal directions in the data space 
which encapsulate maximum sample variances. 
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N points, M components 

PCA finds the orthogonal directions in the data space 
which encapsulate maximum sample variances. 
 
A principal component is also called 
eigenvector, or eigenfunction. 

1st Principal Component 

2nd Principal Component 

We reduce the dimension 
of the problem from M to 2. 
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Properties of PCA 

• PCA decomposes the data into a set of eigenfunctions. 

• The eigenfunctions are orthogonal (perpendicular) to each 
other: 
– The dot product between two eigenvectors is zero. 

• The set of eigenfunctions maximize the sample variance of 
the data. Therefore, the data can be decomposed into a 
handful of eigenfunctions (for linear data distribution). 

• For non-linear data, PCA may fail (i.e., we need many orders 
of eigenfunctions).  

• In galaxy spectroscopy, the basis functions are called 
“eigenspectra” (Connolly et al. 1995). 
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PCA Eigenspectra (𝑒𝑖λ) Representation 
of Galaxy Spectra 

 

 
  𝑓
λ
=  𝑎𝑖𝑒𝑖λ𝑖   

 

Minimize reconstruction error with respect to 𝑎𝑖’s: 
𝑥2 =  𝑤

λλ
 𝑓

λ
−  𝑎𝑖𝑒𝑖λ𝑖

2 
 
Get the weights for each basis function: 
𝑎𝑖 = 𝑎𝑖(𝑤λ, 𝑒𝑖λ, 𝑓λ) 
 
                                                    (Connolly & Szalay 99) 

(i runs from 1 to  
the number of eigenspectra) 
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Eigenspectra of Nearby Galaxies 
(SDSS: N = 170,000; M = 4000) 

Wavelength (Å) 
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PCA as a way for Signal Separation 

• The basis functions has physical meanings. 
Hence each order (or called “mode”) of 
function can be considered as a signal. 

• In PCA, the basis functions are orthogonal. 
They point to different direction in the data 
space and are statistically independent. 
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Eigenspectra of Half a Million Galaxy 
Spectra 

• 2nd mode: galaxy type (steepness of the spectral slope) 

2nd 

1st 
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Eigenspectra of Half a Million Galaxy 
Spectra 

• 3rd mode: post-starburst activities (stronger the absorptions, weaker the 
H) 

3rd 

1st Absorptions 

H 
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Image Reconstruction 
Original Reconstruction using 50 Eigenfaces 

(Everson & 
Sirovich 1995) 
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Matrix Representation of Data 

• Many datasets are made up with N objects 
and M variables. 

• Matrix provides a handy way to represent the 
data. 

• An added advantage is that many algorithms 
can be expressed conveniently in matrix form. 
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Example:  
Size M x N Data Matrix for Galaxy Spectra 

 

Galaxy ID 

W
av

e
le

n
gt

h
 𝐴11   𝐴12     𝐴13  ⋯  𝐴1𝑁 
𝐴21   𝐴22     𝐴23  ⋯  𝐴2𝑁 
   ⋮        ⋱                    ⋮ 
𝐴𝑀1  𝐴𝑀2  𝐴𝑀3   ⋯  𝐴𝑀𝑁 

𝐴 = 

* PCA in matrix notation: see handout. 

   
𝐴𝑖𝑗 = 𝐹𝑙𝑢𝑥 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑔𝑎𝑙𝑎𝑥𝑦 
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Compressing the Object Space: 
CUR Matrix Decomposition 

• In PCA, the number of components in the data 
vectors remain intact. 

• CUR Matrix Decomposition provides a 
dramatically new way to compress big data. 
This approach compresses the variable space: 

– The number of components in the data vectors 
decreases. 
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Some Wavelengths are More Informative:  
Leverage Score per Each Variable 

Flux(λ1) 

Flux(λ2) 

Flux(λ3) 

Flux(λ4) 

Flux(λ5) 

Flux(λ6) 

Sample Variance Sparsity 
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CUR Matrix Decomposition  
(Mahoney & Drineas 2009) 

 A        =      C         U            R 
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CUR approximates data matrix: 
             min || A – CUR ||F 
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Frobenius Norm 

• A matrix norm is a number for representing the amplitude 
of a matrix. 

• The Frobenius norm is defined as follows: 
 
 
 
 
 

• In CUR Matrix Decomposition,  the matrix A is the 
difference between the data matrix and its approximated 
matrix. The Frobenius norm therefore measures the 
“distance” between the two matrices. 

𝐴 𝐹 =   𝐴𝑖𝑗
2

𝑁

𝑖=1

𝑀

𝑖=1
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Find Important Regions in  
Multi-Dimensional Data: 

Galaxy Spectra 
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Discussion of Jan 7 Homework 

• Total number of pixels in the CCD = 1024 x 
1024 pixels = 1,048,576 pixels ~ 1 MPixels. 

• GAIA needs 109/60/60/24/365 years = 31.7 
years =31 years 8 months ~ 32 years. 
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