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Machine Learning 

• We want computers to perform tasks. 
• It is difficult for computers to “learn” like the 

human do. 
• We use algorithms: 

– Supervised, e.g.: 
• Classification 
• Regression 

– Unsupervised, e.g.: 
• Density Estimation 
• Clustering 
• Dimension Reduction 
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Unsupervised vs. Supervised Learning 

• Unsupervised: 

– Given data {𝒙1, 𝒙2, 𝒙3, ⋯, 𝒙𝑛} find patterns. 

– The description of a pattern may come in the form 
of a function (say, 𝑔 𝒙 ). 

• Supervised: 

– Given data {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3), ⋯, 
(𝒙𝑛, 𝒚𝑛)} find a function such that 𝑓 𝒙 = 𝒚. 

–  𝒚 are the labels. 
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Types of Label 

• Class 

– Binary: 0, 1 

– Galaxy types: E, S, Sa, … etc. 

• Physical Quantities 

– E.g. Redshift of a galaxy 

1/21/2014 JHU Intersession Course - C. W. Yip 



Basic Concepts in Machine Learning 

• Label and Unlabeled data 

• Datasets: training set and test set 

• Feature space 

• Distance between points 

• Cost Function (or called Error Function) 

• Shape of the data distribution 

• Outliers 
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Training Set & Test Set 

• Training Set 

– Data that are used to build the model. 

• Validation Set  

– Data that used to evaluate the model. 

– Data were not used in training. 

– (Sometimes omitted.) 

• Test Set 

– Similar to Validation Set but for the final model. 
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Aspects in Supervised Learning 

• What are the popular algorithms? 

• How to minimize cost function (numerically)? 

– Where a model is already given. 

• How to select the appropriate model? 

– Where we have many candidate models. 
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Supervised Learning: Find Decision 
Boundary in Labeled Data 
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Algorithms for Supervised Learning: 
Classification and Regression 

• Principal Component Analysis 

• KNN 

• Support Vector Machine 

• Decision Tree 

• Regression Tree 

• Random Forest 

• Etc. 
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K Nearest Neighbor (KNN) 

• One of the simplest supervised algorithms. 

• Idea: use k-neighbors to estimate 𝒚 given 𝒙. 

• The value of k can be determined (see “Model 
Selection”). 

1/21/2014 JHU Intersession Course - C. W. Yip 



KNN 

• Given {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3), ⋯, (𝒙𝑛, 𝒚𝑛)}, find 
𝒚 for a given 𝒙. 

• E.g., 𝒙 has two components (𝒙 ∈ 𝑅2),  𝒚 is 0 or 1. 

• Estimated Class: 
– From the majority vote of k nearest 

neighbors 
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Support Vector Machine (SVM): 
Finding Hyperplanes in the Feature 

Space 
• Map data into higher dimensional feature space. 
• The decision boundaries, or the hyperplanes, separate 

the feature into classes. 
– 1D data: a point 
– 2D data: a line 
– Higher-dimensional data: a hyperplane 

• More than one hyperplane can do the job. 
• Support vectors are data points located closest to the 

hyperplanes. 
– They are the most difficult to classify. 

• SVM chooses the hyperplanes which maximize the 
margin of the support vectors. 
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Many Hyperplanes can Separate the 
Data 
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SVM finds the Hyperplane which Maximize 
the Margin (Perpendicular to Hyperplane) 
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SVM in Galaxy Classification 

(Classification of LAMOST galaxy spectra, Haijun Tian, 2014 in prep.) 
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SVM in Galaxy Classification 

Rose Criterion 

(Classification of LAMOST galaxy spectra, Haijun Tian, 2014 in prep.) 1/21/2014 JHU Intersession Course - C. W. Yip 



Decision Tree 

• A decision tree partitions the data by features. 

• A decision tree has 

– Root Node: top most decision node 

– Decision Nodes: has two or more branches (“YES” 
or “NO”; “x > 0.8” or “x = 0.8” or “x < 0.8”). 

– Left Node: where we make decision (classification 
or regression). 
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Decision Tree 

• Given {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3), ⋯, (𝒙𝑛, 𝒚𝑛)}, find 
𝒚 for a given 𝒙. 

• E.g., 𝒙 has two components,  𝒚 is 0 or 1. 
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Decision Tree 
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Binary-Decision Tree 
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Regression Tree 

• E.g., 𝒙 has one component (= 𝑥); 𝒚 is real. 
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Regression Tree 

• E.g., 𝒙 has one component (= 𝑥); 𝒚 is real. 
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Random Forest:  
Reduce the Variance of Estimator 

• Idea: use many trees instead of just one for 
estimation.  

• Algorithm: 
– Sample a subset from data. 
– Construct i-th tree from the subset. 
– At each node, choose a random subset of m features. 

The split the data based on those features. 
– Repeat for i = 1, 2, … , B trees.  
– Given 𝑥 

• Take majority vote from trees (Classification) 
• Take average from trees (Regression) 
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Photometric Redshift Using Random 
Forest 

• Use photometry (e.g., using SDSS filters u,g,r,i,z, or 5 data 
points) and galaxy inclination to estimate redshift (distance) of 
galaxies (Yip, Carliles & Szalay et al. 2011). 

 

 
z(spec) is the true redshift,  
the redshift we obtained 
from galaxy spectra. 
 
z(photo) is the estimated 
redshift, the redshift we 
obtained from galaxy 
photometry. 
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Comparison of Supervised Learning 
Algorithms 

• Caruana & Niculescu-Mizil (2006) compared 
algorithms over 11 problems and 8 
performance metrics. 

Columns are the probability that an algorithm 
would perform at 1st, 2nd , 3rd, …, etc. 
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Cost Function 

• In many machine learning algorithms, the idea is 
to find the model parameters 𝜽 which minimize 
the cost function 𝐽 𝜽 : 
 
 
 

     m is the size of the training set. 
• That is, we want 𝑚𝑜𝑑𝑒𝑙 as close to 𝑡𝑎𝑟𝑔𝑒𝑡 as 

possible. 
• Note that 𝑚𝑜𝑑𝑒𝑙 depends on 𝜽. 

𝐽 𝜽 =
1

𝑚
 𝑚𝑜𝑑𝑒𝑙 𝑑𝑎𝑡𝑎𝑖 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 2
𝑚

𝑖=1
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Minimization of Cost Function in order 
to Find Modeled Parameters 

• Maximum Likelihood Estimate 

• Bayesian Parameter Estimate 

• Gradient Descent 

• Etc. 
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Gradient Descent: Idea 

(Source: Andrew Ng) 

                                       

                  

                  

The minimum is local – for a different starting 
point, we may get different local minimum. 
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Minimization of Cost Function: 
Gradient Descent Algorithm 

• Start at a point in the parameter space. 

• Look around locally, take a baby step which has the largest 
descent. 

• Repeat until we find the minimum cost. 

• Mathematically, we keep refining 𝜃𝑗 until convergence, in 

accord to: 

 
𝜃𝑗 := 𝜃𝑗 − α

𝜕

𝜕𝜃𝑗
𝐽(𝜽) 

• 𝛼 is the Learning rate. 
• j runs from 1 to the number  
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Example: Gradient Descent in 1D Data 
 

• The learning rate is positive. 

 𝜃 ≔ 𝜃 − α
𝑑

𝑑θ
𝐽(𝜃) 

Start from the right of the minimum. 
𝜕

𝜕θ
𝐽(𝜃) = slope > 0. 

𝜃 decreases as the algorithm progresses. 
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Model Selection in Machine Learning 

• The goal of Cost Function minimization is to 
select a model. 

• Occam’s Razor: the best explanation is usually 
the simplest one. 

• Some model selection approaches: 
– Bayesian Approach 

– Cross Validation 

– Akaike Information Criterion (AIC) 

– Bayesian Information Criterion (BIC) 
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Model Selection: How to Select from 
Models with Different Complexity? 

• Notice that the complexity parameters are not 
well defined and may need user’s judgment. 

• Complexity parameter of a model, e.g.: 

– The number of nearest neighbors (k) in KNN. 

– The number of basis functions in regression. 
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Example: Fitting a combination of 
Basis Functions 

• E.g., Polynomial functions: {∅0, ∅1, ∅2, ⋯ , ∅𝐵} where 
∅𝑘 = 𝑥𝑘   
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Schematics: Fitting a combination of 
Basis Functions 

• E.g., Polynomial functions: {∅0, ∅1, ∅2, ⋯ , ∅𝐵} where 
∅𝑘 = 𝑥𝑘   
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Schematics: Fitting a combination of 
Basis Functions 

• E.g., Polynomial functions: {∅0, ∅1, ∅2, ⋯ , ∅𝐵} where 
∅𝑘 = 𝑥𝑘   
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Bias-Variance Decomposition 

• Suppose we have an estimator of the model 
parameters. 

• An estimator is denoted as 𝜃 . 

• Mean Square Error of an estimator can be 
expressed as: 

MSE = bias2 + var 

where        𝑀𝑆𝐸 =
1

𝑁
 (𝜃 − 𝜃𝑇𝑟𝑢𝑒)2𝑁

𝑖=1  
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Best Model 

The Best Model: Tradeoff between 
Bias and Variance 

Model Complexity 
Large 

Model Complexity 
Small 

 bias2  variance 

 MSE 
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Intuition: Bias-Variance Tradeoff 

• E.g., Polynomial functions: {∅0, ∅1, ∅2, ⋯ , ∅𝐵} where 
∅𝑘 = 𝑥𝑘   
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Intuition: Bias Variance Tradeoff 

• E.g., Polynomial functions: {∅0, ∅1, ∅2, ⋯ , ∅𝐵} where 
∅𝑘 = 𝑥𝑘   

 

 

x 

x 

x 

x 

x 
x 

x 

x 

x 
x 

x 

x 
x 

x 

x 

x 

x 

x 
x 

𝑥  

𝑦  

B = 1 

B = 10 𝑥′  

𝑦(𝒕𝒓𝒖𝒆)  Variance of  
estimated 𝑦′𝒔  

1/21/2014 JHU Intersession Course - C. W. Yip 



Demonstration of Overfitting in R 
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Some Variations of Machine Learning 

• Semi-Supervised Learning:  

– Given data {(𝒙1, 𝒚1), (𝒙2, 𝒚2), (𝒙3, 𝒚3), ⋯, 
(𝒙𝑘 , 𝒚𝑘), 𝒙𝑘+1, ⋯, 𝒙𝑛} predicts labels 𝒚𝑘+1, ⋯, 
𝒚𝑛 for 𝒙𝑘+1, ⋯, 𝒙𝑛. 

• Active Learning:  

– Similar to Semi-Supervised but we can ask for 
extra labels 𝒚𝒊 for particular data points 𝒙𝒊 as the 
algorithm runs. 
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