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Machine Learning

 We want computers to perform tasks.

* |tis difficult for computers to “learn” like the
human do.

* We use algorithms:
— Supervised, e.g.:
* Classification
* Regression

 Density Estimation
e Clustering
 Dimension Reduction
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Unsupervised vs. Supervised Learning

* Unsupervised:
— Given data {x!, x4, x3,---, x™} find patterns.

— The description of a pattern may come in the form
of a function (say, g(x)).

e Supervised:

— Given data {(x%, y1), (x%,y%), (x3,y3), -,
(x™, y™)} find a function such that f(x) = y.

— y are the labels.



Types of Label

* Class

— Binary: 0, 1

— Galaxy types: E, S, Sa, ... etc.
* Physical Quantities

— E.g. Redshift of a galaxy



Basic Concepts in Machine Learning

* Label and Unlabeled data
e Datasets: training set and test set
* Feature space

e Distance between points

e Cost Function (or called Error Function)
* Shape of the data distribution

* Qutliers
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Training Set & Test Set

* Training Set
— Data that are used to build the model. |
e Validation Set

— Data that used to evaluate the model.

— Data were not used in training.
— (Sometimes omitted.)

 Test Set
— Similar to Validation Set but for the final model.
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Aspects in Supervised Learning

 What are the popular algorithms?
 How to minimize cost function (numerically)?

— Where a model is already given.

* How to select the appropriate model?

— Where we have many candidate models.



Supervised Learning: Find Decision
Boundary in Labeled Data

A
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Supervised Learning: Find Decision
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Algorithms for Supervised Learning:
Classification and Regression

Principal Component Analysis
KNN

Support Vector Machine
Decision Tree

Regression Tree

Random Forest
Etc.



K Nearest Neighbor (KNN)

* One of the simplest supervised algorithms.
* Idea: use k-neighbors to estimate y given x.

* The value of k can be determined (see “Model
Selection”).



KNN

* Given {(x', y"), (x%,3%), (x°,¥°), -+, (x™, y™)}, find
y for a given x.

* E.g., x has two components (x € R?), yisOor 1.
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Support Vector Machine (SVM):
Finding Hyperplanes in the Feature

. Space
Map data into higher dimensional feature space.

The decision boundaries, or the hyperplanes, separate
the feature into classes.

— 1D data: a point
— 2D data: a line
— Higher-dimensional data: a hyperplane

More than one hyperplane can do the job.

Support vectors are data points located closest to the
hyperplanes.

— They are the most difficult to classify.

SVM chooses the hyperplanes which maximize the
margin of the support vectors.



Many Hyperplanes can Separate the
Data
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SVM finds the Hyperplane which Maximize
the Margin (Perpendicular to Hyperplane)
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SVM in Galaxy Classification
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SVM in Galaxy Classification
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Decision Tree

* A decision tree partitions the data by features.
* A decision tree has

— Root Node: top most decision node

— Decision Nodes: has two or more branches (“YES”
or “NO”; “x>0.8" or “x=0.8" or “x < 0.8”).

— Left Node: where we make decision (classification
or regression).



Decision Tree

* Given {(x',y"), (x%,37), (x°,¥°), -+, (x™, y™)}, find
y for a given x.

* E.g., x has two components, yis O or 1.
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Decision Tree

* Given {(x',y"), (x%,37), (x°,¥°), -+, (x™, y™)}, find
y for a given x.
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Binary-Decision Tree
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Regression Tree

* E.g., x has one component (= x); y is real.




Regression Tree

* E.g., x has one component (= x); y is real.
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Random Forest:
Reduce the Variance of Estimator

* |dea: use many trees instead of just one for
estimation.

* Algorithm:
— Sample a subset from data.
— Construct i-th tree from the subset.

— At each node, choose a random subset of m features.
The split the data based on those features.

— Repeatfori =1, 2, ..., B trees.

— Given x
e Take from trees (Classification)
e Take from trees (Regression)



Photometric Redshift Using Random

Forest

* Use photometry (e.g., using SDSS filters u,g,r,i,z, or 5 data
points) and galaxy inclination to estimate redshift (distance) of
galaxies (Yip, Carliles & Szalay et al. 2011).

z(spec) is the true redshift, Q.10

the redshift we obtained i
0.05F

from galaxy spectra. i

z(photo) is the estimated 0.00 :
redshift, the redshift we
obtained from galaxy

photometry.

—0.05F

z(photo) — z(spec)
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Comparison of Supervised Learning
Algorithms
e Caruana & Niculescu-Mizil (2006) compared

algorithms over 11 problems and 8
performance metrics.

Columns are the probability that an algorithm
would perform at 1st, 274 314, etc.
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Cost Function

* In many machine learning algorithms, the idea is
to find the model parameters 8 which minimize
the cost function J(0):

m
1 . .
J(0) = EZ(model(data‘) — target‘)2
=1
m is the size of the training set.

* Thatis, we want model as close to target as
possible.

* Note that model depends on 8.



Minimization of Cost Function in order
to Find Modeled Parameters

* Maximum Likelihood Estimate
* Bayesian Parameter Estimate

e Etc.



Gradient Descent: Idea

(Source: Andrew Ng)
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Minimization of Cost Function:
Gradient Descent Algorithm

Start at a point in the parameter space.

Look around locally, take a baby step which has the largest
descent.

Repeat until we find the minimum cost.

Mathematically, we keep refining 6; until convergence, in
accord to:

0 := 6; —a—](e)

* «isthe Learning rate.
* jrunsfrom 1to the number
of parameters in the model.



Example: Gradient Descent in 1D Data

0 :=0—a--](6)

* The learning rate is positive.

0 0
1(6) 1(8)
Hstart Qstart
end > end
6 0
Start from the right of the minimum. Start from the left of the minimum.

%](9) = slope > 0.
0 decreases as the algorithm progresses.
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Model Selection in Machine Learning

* The goal of Cost Function minimization is to
select a model.

 Occam’s Razor: the best explanation is usually
the simplest one.
* Some model selection approaches:
— Bayesian Approach
— Cross Validation
— Akaike Information Criterion (AIC)
— Bayesian Information Criterion (BIC)



Model Selection: How to Select from
Models with Different Complexity?

* Notice that the complexity parameters are not
well defined and may need user’s judgment.
 Complexity parameter of a model, e.g.:

— The number of nearest neighbors (k) in KNN.
— The number of basis functions in regression.



Example: Fitting a combination of
Basis Functions

* E.g., Polynomial functions: {@,, @1, @5, -+, D5} where
(Dk — Xk




Schematics: Fitting a combination of
Basis Functions

* E.g., Polynomial functions: {@,, @1, @5, -+, D5} where
(Dk — Xk

B=1
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Schematics: Fitting a combination of
Basis Functions

* E.g., Polynomial functions: {@,, @1, @5, -+, D5} where
K

D =x

B=1
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Schematics: Fitting a combination of
Basis Functions

* E.g., Polynomial functions: {@,, @1, @5, -+, D5} where

(Dk = x¥
A
y '
T
/ X y
A X >/A x-)
// X X
e )
/
B=1 Large Model Complexity:

Potential Overfitting



Bias-Variance Decomposition

e Suppose we have an estimator of the model
parameters.

e An estimator is denoted as 8.

 Mean Square Error of an estimator can be
expressed as:

MSE = bias? + var

where MSE = %Z{\Ll(é — eTrue)Z



The Best Model: Tradeoff between
Bias and Variance

bias? variance
A
MSE
Best Model
>
Model Complexity Model Complexity
Small Large
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Intuition: Bias-Variance Tradeoff

* E.g., Polynomial functions: {@,, @1, @5, -+, D5} where

(Dk=xk

y
y(true)

Dotted: model from a diffe?‘er)m(t,

random draw of data
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Intuition: Bias Variance Tradeoff

* E.g., Polynomial functions: {@,, @4, @5, -+, D5} where

(Dk — Xk
A
y
¥ _~"Variance of
true % X ariance o
y( ) /x/ estimated y's
X
X X x/i
« X~ X S
A +- 3¢
1 o X' X
_ X X
/ .
B=1
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|F RGui (64-bit)

|[F R Graphics: Device 2 (ACTIVE)

Zet nurwber of data points.

<— &0

et x.

<— seqg(0, 1, length = n)

Fix v to be Znd order polynomial of x (with randomness) .
noise = runifin, -0.1, 0.1)

yorue = x*Z2

¥ «<— ¥Lrue 4+ noise

# Fit straight line, Znd order poly, and 10th order poly.
ficl <- lmi{y =~ polyix, 1, raw = TRUE)
fitZ <- lmiy =~ polyix, &, raw = TRUE])
fit3 <- lmi{y =~ polyix, 20, raw = TRUE)]
# Calculate y estimate

vheadl <- predictcifitcl, data.frame(x = %
vheadZ <- predictcifiti, data.frame(x = %
vhead? <- predictcifitd, data.frame(x = %
Marning message: =
In predict.lm({fits, data.frame(x = =) :

prediction from a rank-deficient fit may be misleading

# Plot data and predictions.

# The 10th order polynomial fit demonstrates overfitting.

plot(®, ¥)

linesix, yheadl, col = "orange™) o
linesix, vheadZ, col = "hlue'™) =
linesix, yheads, col = "red"

# Calculate Eias.

hiasl <- meaniyheadl - ytrue) g —
hiasd <- mean(yheadi - yLrue)
hias3 <- meanyheadi - yorue)

# Calculate Var.

varl <- wvar [yheadl

vars <- wvar (yheads)

vard <- var (yheadd)

# Calculate MSE.

mael = hiasl*Z + wvarl

mzei = hiasZ®Z + wvar

mEed = hiasi®Z + wvarsd

# Print M3SE for each fit.

» mael

[1] O.07377807

F om3ed

[1] 0.0862601

F m3ed

[1] 0.08740733

> # Summwary: MSEZ has wminimum MSE.
> # End
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Some Variations of Machine Learning

* Semi-Supervised Learning:

— Given data {(x1, y1), (x%,y%), (x3,y3), -,
(x%, v, } predicts labels y**1, ...,
y™ for xk+1 ... x™,

* Active Learning:

— Similar to Semi-Supervised but we can
for particular data points x' as the
algorithm runs.



