Alternating Product Ciphers: A Case for Provable Security Comparisons

Indocrypt 2013 John Pliam
Johns Hopkins University

Introduction
 Definitions: Deciphering the Title

Def. Alternating Product

Def. Provable Security Comparisons

- (provable security) comparisons
- Inequalities like $\operatorname{Adv}(Z)<\operatorname{Adv}(Y)$
- provable (security comparisons)
- Other security metrics H_{a}, W, G_{a}

Indeed

Part I
 Alternating Product Ciphers

Under "Random" Cipher Approx

Cipher "is Group"

Could be =

MITM uses ideal approx

Pliam, 1998-99

This Paper

3-Fold Collapse

By Extension

General Collapse

Report Card: F

3-Fold Expansion

support: $|H| \rightarrow|H \pi H|$

3-Fold Collapse

when $\sigma \in H \pi^{-1}$, support: $|H \pi H| \rightarrow|H|$

Simplest Counterexample

when $k_{1}=k_{2}$, support collapses

Cosets

- Fact: the set of all permutations taking plaintext p to ciphertext c
- Is coset gH,
- Where H is subgroup, $\operatorname{Stab}(p)$

Structure of Cosets

Extends to Nonabelian Case

abelian

cosets	$x+V$	$g H$
Lagrange	$W=\bigcup x+V$	$G=\bigcup g H$
action	$\mathrm{y}+(\mathrm{x}+\mathrm{V})=(\mathrm{y}+\mathrm{x})+\mathrm{V}$	$\mathrm{k}(\mathrm{gH})=(\mathrm{kg}) \mathrm{H}$
stabilizer	V	H

Orbit-Stabilizer Theorem

- Thm. Any (transitive) group action is equivalent to a coset action.

Double Cosets

$$
m_{i}=\left[H: H \cap{ }^{g_{i}} K\right]
$$

Theorem 2

Thm. $T=X Y Z, t=x * y * z$ is a convex direct sum

$$
t=\bigoplus_{i=1}^{m} \alpha_{i} z_{i}
$$

where $m=\left[H: H \cap{ }^{\pi} K\right]$ and $z_{i} \preceq z$.

Corollaries

$$
T=X Y Z \text { and } D=X Z
$$

case1: $T=\Lambda D$
case2: $D=\Lambda^{\prime} T$

Part II

Provable Security Comparisons

Passwords by Non-Increasing Likelihood

Cumulative Probability

Sounds Familiar? "99\%"

Financial wealth distribution, 2007

Lorenz Curve c. 1910

Theory of Inequalities

- Schur, 1923
- Hardy, Littlewood \& Polya, 1929
- Birkhoff, von Neumann ca. 1950

Majorization, Schur Convexity

Higher-Dim Diagrams

Higher Data Complexity?

Kronecker-Like Formula

When $z \preceq y$ with $z=D y$ and D "like" $Z=X Y$,

$$
z_{\downarrow}^{(i)}=\sum_{i=1}^{[G: H]} \omega_{i j} D_{i j} y_{\downarrow}^{(i)}
$$

where $\left[\omega_{i j}\right]$ and each $D_{i j}$ are doubly stochastic.

Diagram Chase ...

Filling In Details

$T=X Y Z$ and $D=X Z$
case1: $T=\Lambda D$;

$$
t \preceq_{q} d, H(T) \geq H(D), \mathbf{A d v}(T) \leq \mathbf{A d v}(D), \ldots
$$

case2: $D=\Lambda^{\prime} T$;

$$
d \preceq_{q} t, H(D) \geq H(T), \mathbf{A d v}(D) \leq \mathbf{A d v}(T), \ldots
$$

Summary

- Security ordering of alternating product depends strongly on internal structure.
- Expansion/Collapse along double cosets
- Comparing via majorization leads to coherence across many (Schur-convex) metrics

Epilogue Provable Security Implications

Provable Security

Indistinguishability

Advantage Proliferation

Need To Prune

- Hypothesis: To prune out the "bad" Adv's, focus on those preserving order (majorization).

