Alternating Product Ciphers: A Case for Provable Security Comparisons

Indocrypt 2013 John Pliam Johns Hopkins University

Introduction Definitions: Deciphering the Title

Def. Alternating Product

Def. Provable Security Comparisons

- (provable security) comparisons
 - Inequalities like Adv(Z) < Adv(Y)
- provable (security comparisons)
 - Other security metrics H_a, W, G_a

Indeed ...

Part I Alternating Product Ciphers

Under "Random" Cipher Approx

Cipher "is Group" ~ < < <

MITM uses ideal approx

Pliam, 1998-99 ~ < < <<<

3-Fold Collapse

By Extension < > <<<

General Collapse

Report Card: F

3-Fold Expansion

support: $|H| \dashrightarrow |H\pi H|$

3-Fold Collapse

when $\sigma \in H\pi^{-1}$, support: $|H\pi H| \dashrightarrow |H|$

Simplest Counterexample

when $k_1 = k_2$, support collapses

Cosets

- **Fact**: the set of all permutations taking plaintext *p* to ciphertext *c*
 - Is coset gH,
 - Where *H* is subgroup, Stab(*p*)

Structure of Cosets

Extends to Nonabelian Case

Orbit-Stabilizer Theorem

• **Thm**. Any (transitive) group action is equivalent to a coset action.

Double Cosets

$m_i = [H:H \cap {}^{g_i}K]$

Thm. T = XYZ, t = x * y * z is a convex direct sum

$$t = \bigoplus_{i=1}^m \alpha_i z_i,$$

where $m = [H:H \cap {}^{\pi}K]$ and $z_i \preceq z$.

Corollaries

T = XYZ and D = XZcase1: T = ADcase2: D = A'T

Part II Provable Security Comparisons

Passwords by Non-Increasing Likelihood

password rank

Cumulative Probability

password rank

Sounds Familiar? "99%"

Lorenz Curve c. 1910

Theory of Inequalities

- Schur, 1923
- Hardy, Littlewood & Polya, 1929
- Birkhoff, von Neumann ca. 1950

Majorization, Schur Convexity

Higher-Dim Diagrams ...

Higher Data Complexity?

Kronecker-Like Formula

When
$$z \leq y$$
 with $z = Dy$ and D "like" $Z = XY$,
$$z_{\downarrow}^{(i)} = \sum_{i=1}^{[G:H]} \omega_{ij} D_{ij} y_{\downarrow}^{(i)},$$

where $[\omega_{ij}]$ and each D_{ij} are doubly stochastic.

Diagram Chase ...

Filling In Details

T = XYZ and D = XZ **case1:** $T = \Lambda D$; $t \leq_q d, H(T) \geq H(D), \operatorname{Adv}(T) \leq \operatorname{Adv}(D), \dots$ **case2:** $D = \Lambda'T$; $d \leq_q t, H(D) \geq H(T), \operatorname{Adv}(D) \leq \operatorname{Adv}(T), \dots$

- Security ordering of alternating product *depends strongly* on internal structure.
- Expansion/Collapse along *double cosets*
- Comparing via *majorization* leads to coherence across many (*Schur-convex*) metrics

Epilogue Provable Security Implications

Provable Security

Indistinguishability

Advantage Proliferation

Need To Prune

• **Hypothesis**: To prune out the "bad" **Adv**'s, focus on those preserving order (*majorization*).