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Title: An Investigation of Arithmetic Operations

Abstract

This paper is an investigation of selected aspects of
arithmetic operations, the first three of which are addition,
multiplication, and exponentiation. The issue being explored is,
first, to explain functions which generalize the three
operations, and thus develop definitions of operations after
exponentiation for natural numbers. Another aspect of the issue
being explored is whether the following arithmetic operations can
be defined on non-integral real numbers: two types of tetration
(the operation after exponentiation), and one type of pentation
(the operation after tetration). Also, some of the interesting
properties of tetration are discussed.
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Introduction

The three basic arithmetic operations, addition,
multiplication, and exponentiation, are quite common in
mathematics. In fact, it could be argued that they form the
basis of our entire mathematical system. But what about
operations "after" exponentiation in this sequence of operations?
This essay will be concerned with generalizing arithmetic
operations, and also with defining and analyzing the properties
of operations after exponentiation.

The Two Generalized Exponentials

Addition, multiplication, and exponentiation are, of course,
closely related: multiplication is repeated addition, and
exponentiation is repeated multiplication. It is possible to
define two different recursive functions which incorporate these
operations and generalize them. The first, the Ackermann
generalized exponential, works as follows (it is named f, here
because it is arbitrarily the first of the two possible functions
in this essay):

£4(0,x.y)=y+x,
(1. x,y)=yx,
fi(Z,X,.}’)=Yx,

Here is a more formal, recursive definition of the Ackermann

function, where x, y, and z are natural numbers (including zero):

£,(0,0.,y)-y,

£4(0,x+1,y)=£,(0, x.y)+1,
£,(1,0,y)-0,

£,(2+2,1,y)=7.
f,(z+1,x+1,y)=£4(2,.£,(2+1,Xx,¥).y).

OPrwWNPF-

(Rogers, 1967, p. 8). The first two lines here define
addition, and the third line indicates that any number times zero
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is zero, which is the initial condition for multiplication. The
fourth line indicates that for operations past multiplication,
the answer obtained, when the second operand is one, is the same
as the first operand; in other words, raising something to the
first power does not change it. The fifth line is the workhorse
of the function; it is what allows the function to be defined,
given all of the initial conditions, for all natural numbers.

Let us illustrate this with an example. Say we want the value of
£,(2,2,3), which equals 3'. Here is the Ackermann evaluation of
£,(1,3,2), using both Ackermann and standard notation, along with

the line number in the Ackermann definition being used:

Ackermann Std. Line No.
£, (2,2,3) 32 Given
£,(1,£(2,1,3),3) 331 5
£,(1,3,3) 3%3 4
£, (0,£(1,2,3),3) 3+(3%2) 5
£, (0,£(0,£(1,1,3),3),3) 343+ (3%1) 5
£,(0,£,(0,£,(0,£,(1,0,3),3),3),3) 3+3+3+(3%0) 5
£, (0, £, (0, £, (0,0,3),3),3) 3+3+3+0 3
£,(0,£(0,3,3),3) 3+3+3 1
£,(0,3+1+1+1,3) 3+6 Rep. 2
(3+1+1+1) +1+1+1 9 Rep. 2

This is, to say the least, cumbersome. It can easily be
seen, though, that the Ackermann function will accomodate any
natural number for any of the three operands (given enough time).
Its awkwardness is also what gives it its versatility, and also
its power. The Ackermann generalized exponential, as well as the
"bottom-up" generalized exponential to defined later, are
described as "doubly nested" recursive functions. This is
because, as in the derivation above, two operands need to be
reduced to zero for the function to work, instead of one operand
for "singly nested" functions. Because the generalized
exponentials are doubly nested, a function f(x,x,x) (the lack of
a subscript implies that either the Ackermann function or the

2
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function to soon be defined will work) is "by-end-pieces" greater
than any function using single nesting (Rucker, 1982, p.106),
such as the exponential function, f(x)=e*, or, the tetration or
pentation functions, to be defined later. For two functions, £
and g, £>,,9 (read f is greater by-end-pieces than g) if and only
if the graph of f eventually manages to get above, and stay
above, the graph of g. More formally, f>,,9 if and only if there
exists some real number N such that for all x>N, f(x)>g(x). So,
in accordance with intuition, f(x,x,x) is indeed a monstrously
powerful function.

Under the Ackermann generalized exponential, operations
after exponentiation associate from the "top down" because new
copies of the first operand are always placed before the previous
expression when recursion is performed. This is due to the quirk
of superscription (upper-right corner) in writing exponents,
which is important notationally for the definition of tetration,
defined below. So, when referring to operations defined under
the Ackermann generalized exponential, we will sometimes use the
phrase "top down."

The other recursive function incorporating the three basic
arithmetic operations, f,, associates from the bottom up; it
places each copy of the first operand at the end of the
expression. There is no difference between the two generalized
exponentials in the first three operations, addition,
multiplication, and exponentiation, since addition and
multiplication are commutative. Beyond exponentiation, however,
there is quite a difference. Here is a recursive definition of
f,:

£,(0,0.y)=y,
(0, x+1,y)=£,(0,x+1,y)+1.

£f,(1.0,y)=0,
f,(z+2.1.y)=y.
Fo(2+1,x+1,y)=f,(2,.y.f,(2+1.x.y)).

The only difference between the recursive definitions of the
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first and second generalized exponentials is in the last line.
As with f,, the first two lines define addition, the third sets
the initial condition for multiplication, and the fourth line is
the initial condition for operations higher than multiplication.
The fifth line serves the same purpose as in f,; the only
difference is that here, new numbers in an expression are added
at the end, rather than at the beginning. For example, in f,, 44
= 4*(4%) = 4*(4*4*4), while in £,, 4% = (4*)*4 = (4*4*4)*4, Of
course, the two results are identical, but that is only because

multiplication is associative.
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"Bottom-Up" Tetration

Using the "bottom up" generalized exponential, it is
possible to define operations past exponentiation. The operation
immediately following exponentiation, called tetration, is
defined by repeated exponentiation. "Bottom up" tetration will
be notated as follows: t;(x,y), read "x tetrated to the y," or,
more explicitly, "x bottom-up tetrated to the y." (Note: a
subscript of two indicates "bottom up," while a subscript of one
would indicate "top down.")

"Bottom-up" tetration is defined as follows. 1Its initial
condition is that for all x, t;(x,l)=x. To find t;(x,y) for any

integer y>1, we can use the following recursive formula:
t, (x,y+1) =t, (x,y) *. (1)

To define it on integers less than 1, we must manipulate the
recursive formula, which gives t,(x,y-1) = tz(x,y)”‘. Table 1
shows a table of a given base, x, raised to different

"tetraponents" (second operands).

=

i 3
t(x,-1)=(x*)*
1
t, (x,0)=x *
t,(x,1)=x, (Table 1)

t,(x,2)=xX,
t(x,4)=((x*) *)*,

With table 1, we can obtain t;(x,y) for any real x (since
exponentiation is defined for all real numbers), and any integral
y. However, it would be nice to define bottom-up tetration for
non-integral y, as well.

Let us first determine criteria for a function serving as an
extension for non-integral tetraponents, that is, for a function
f, defined on all real x, such that £(x) = t;(b,x) for a constant
b:
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1. The function must satisfy the defining recursive equation
(equation 1 for t,) for all real numbers.
2. The function must be infinitely differentiable.

Bottom-up tetration happens to be relatively easy to define
for non-integral tetraponents. By repeated use of the law (a®)°
= a™, we can obtain the explicit formula

ta( X, y)=x X7, (2)

for all integral y. Two examples:

Eo( X, 3)=x (X3 )ay (xH-(x x)x,
1 1 1 1

£y X, -3)=x X ax D ((((x X)) X) T T,
These both agree with table 1. But does our definition meet the
two criteria? First, it must satisfy the equation

t(x,y+t1l)=(t,(x,y))* for all x:

(ta(x, ¥))F2(x XY Xay (X7 oy (XN g, (X, y+1).

This works, and the function is infinitely differentiable (since
the exponential function for any base is infinitely
differentiable), so it seems reasonable to accept the definition

in equation 2 as the extension of f(x) on non-integers.
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"Top-Down Tetration"

The Ackermann generalized exponential has its own version of
tetration. We will use the notation t,(x,y), which is read "x
tetrated to the y," or "x top-down tetrated to the y." Results
for tetraponents greater than one are found by using a recursive

formula:

L (X, y+l)=x BalX7) (3)

Results for tetraponents less than one are found by using the
inverse formula,

ty(x,y-1)=1og,(t,(x.¥)) (4)

Here is a table of a given base, x, raised to several
tetraponents (note that tetration is not defined for tetraponents
less than or equal to negative 2):

t4(Xx.-2)=0 fOor x<1i1.
ty(Xx,-2)=- for x>1,

We must also consider the odd case of the base being equal
to 1. We must define t,(1,1) to be 1. Suppose we want the value
of t,(1,2). By equation 3, this equals 1!=1, which seems
perfectly acceptable. Now suppose that we have a bad short-term
memory and again want the value of t,(1,1). Even without looking
at equation 4, which is what we would use (successfully) for any
other base, it is apparent that any real value of t,(1,1) would
work, since any number raised to the first power is one! The
obvious solution is to say that t,(b,x) is undefined for b=l.
Top-down tetration is also undefined for b=0, also since equation
4 will not work.

Just as in bottom-up tetration, it would be nice to define

7
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top-down tetration for non-integral tetraponents. A graph of the
values of f(x) = t,(b,x), where b is a real constant (except 1)
and X is an integer, is included here:
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We would want our function extending top-down tetration to
non-integral tetraponents to satisfy the same two criteria used
for t,; that is, we would want the function to (1) satisfy the
defining recursive equation (equation 3), and (2) be infinitely
differentiable.

t, is much harder to define for non-integral tetraponents
than t,, mostly because the convenient rule of multiplying
exponents used in the t, definition does not apply. To
illustrate the difficulties, let us try to evaluate t,(2,2.5),
which, assuming the tetration function is well-behaved, we know
lies somewhere between t,(2,2) = 4 and t,(2,3) = 2* = 16. If we
assume an additive law analogous to the one in exponentiation
(2% = 22#2-5 = 4%V/2), we might try to define t,(2,2.5) as
t,(2,2)%*-3, There are two problems with this approach: first,
we don’t know what t,(2,.5) is, and, perhaps more seriously,
there is no equivalent additive law. To see this, consider a
counterexample: t,(2,2)%(32 = 4% = 64 = t,(2,4) = 2'* = 65536.
Assuming some exotic sort of additive law, we could come up with
a process which, done twice on 4, yields 16. Doubling the result
seems an obvious choice. This would yield a result of t,(2,2.5)
= 8. However, defining tetration in this way leads to a
violation of our first criterion. Following the same line of
thought, t,(2,1.5) would equal 2V2 (since multiplying t,(2,1) = 2
by V2 twice yields t,(2,2) = 4), but 2?2 = 8, the result for
t,(2,2.5). It is also possible to find a number n such that n"*
= 16, and then define n' as t,(2,2.5), but, again, the result is

8
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inconsistent with the result for t,(2,1.5).

It is possible to find a sequence of polynomials which
approximate a function t, where t(x) = t,(b,x), for some base b,
on one unit-length interval, say, [-1,0]. This unit interval may
be "copied" using equation 3 to define t(x) for all unit
intervals, and, therefore, for all real numbers. For example,
given some value such as t(-.5), it is possible to use the
formulas t(y+1l)=b*¥ and t(y-1)=log, t(y) to obtain t(-1.5),
t(.5), t(1.5), t(2.5), and so on.

The easiest interval on which to define the function will be
[-1,0], since t(-1) = 0 and t(0) = 1 (see graph on previous
page). We will define f(x) to be t(x) shifted over one unit to
the right, making it a function on [0,1] (this is to make future
algebra simpler).

If we assume that f is continuous, then a linear, first-
degree polynomial can be defined which satisfies the equations
p,(0) = 0, p,(1) = 1 (p, stands for first-degree polynomial
approximation). Obviously, p,(x) = x, but we can also go about
it more systematically. Let p,(x) = a,x +a,. Then p,(0) = a, = 0.
Also, p,(1) = a, + a, = 1. Since a, = 0, a, = 1. Therefore, p,(X)
= X. So, to get a linear approximation, we must assume
continuity and solve a simultaneous system of two equations in
two unknowns.

If we further assume that f is differentiable, then we can
obtain a quadratic approximation. We define a generic quadratic
equation p,(x) = a,x* + a;x + a,. As before, p,(0) = 0, and p,(1)
= 1. The third of the three necessary equations (there are three
unknowns) comes from differentiating both sides of the defining
equation, f(x+1) = bf™®, DpDifferentiating, we get f'(x+l) =
bt (log b)f’'(x). Substituting 0 for x, we get f£'(1l) = (log
b)f'(0). (Note: "log" means natural logarithm unless otherwise
indicated.) We must also differentiate our generic quadratic
equation: p,’(x) = 2a,x + a,. Now, since p,(0) = 0, a, = 0. Also,
p,(l) = a, + a, + a;, = 1, so, since a, = 0, a, + a, = 1. Since
f'(l) = (log b)f'(0), p,' (1) = (log b)p,"'(0). We may now

9
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substitute 0 for x in our differentiated generic quadratic
equation, giving 2a, + a, = (log b)(a,), and so we have three
equations in three unknowns, which can be solved. The end result
is p,(x) = (1-2/(l+log b))x? + (2/(l+log b))x.

If we assume that f is twice-differentiable, we can obtain a
cubic approximation; i1f we assume it is thrice-differentiable, we
can obtain a quartic. In general, to obtain an nth-degree
polynomial approximation, we must assume (n-1)-times
and then solve n+l equations in n+l1 unknowns.
t,(b,x) 0.9, 1.4,
linear through fourth-degree approximations.

differentiability,
Here are graphs of for three different bases:
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Suppose we do obtain an infinitely differentiable function
on [0,1] which is the limit of our polynomial sequence, and we
"copy" this interval on éll other unit intervals (using the
equation t,(b,x+1) = b® (*®),  obtaining t,(b,x). Is this function
necessarily infinitely differentiable everywhere? The only
questionable points are the points at which x is an integer,
since polynomials are always smooth, and so is bP™®), where p is a
polynomial function, and so on. We know that t, is infinitely
differentiable on [-1,0]. Is it at x =12 oOn [0,1], t,(b,x) is
really bf™, where f(x) is the shifted function on [0,1], and, on
[1,2], t,(b,x) is b**™, We know that the transition point
between f(x) and b*®), which is the point x = 0, is infinitely
differentiable, and the only difference for x=1 is that there is

a "b" in front; that is, instead of f(x) we have bf®, and

10
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instead of bf®, we have b**™®_, Raising b to the power of both
sides of the "equation" indicating infinite differentiability is
allowed. Likewise, testing the point x = 2, all we have to do is
raise b to the power of both sides of the "equation" which
indicates infinite differentiability at x=1. So all questionable
points, those for which x is an integer, can be accounted for in
this way.

Cumbersome as this polynomial process is, with terrible
eventual higher derivatives of f(x+1)=bf™®, it does seem to yield
an approximating sequence of polynomials. I have not been able
to prove that the polynomial sequence converges, but I am almost
positive that it does. First of all, the graphs look as though
they converge (see the graphs on the previous page). Also, I
have tried this process to define the cosine function (using the
recursive equation f(x+m)=-f(x), initial condition f£(0)=1), and
the gamma function (f(x+1)=xf(x), initial condition f(1)=1), and
they seem to converge, not only when considering the distance
between successive approximations, but also they seem to converge
to the cosine and the gamma functions, respectively. Moreover, I
have been able to definitely prove that this process yields a
convergent sequence of polynomials when applied to the function
f(x+1) = f£(x), initial condition £(0) = 0. The most obvious such
function is f(x) = 0, and it can be proven that, assuming any
finite degree of differentiability, the resulting polynomial
approximation is zero. Therefore, the polynomial sequence
trivially converges to 0. Based on this evidence, it seems a
warranted conjecture that the polynomial sequence approximating
the function f(x+1) = bf™, £(0) = 0, converges.

Even if the polynomial sequence does converge, does it
necessarily provide a unique, infinitely differentiable function
satisfying the initial condition and recursive function? I am
not sure. Again, consider the recursive function f(x+1)=£f(x),
initial condition f£(0)=0. Even though its polynomial sequence
converges to f(x)=0, there is another infinitely differentiable
function where f(x+1)=f(x), namely, f(x)=sin(2nx). Therefore, in

11
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this example, there is not a unique, infinitely differentiable
function satisfying the initial condition and recursive formula.
Another example worth considering is the gamma function, for
which, as indicated above, this polynomial approximation
procedure does seem to work. Is the gamma function the only
infinitely differentiable function for which f(x+1)=xf(x)? It is
unique in at least one way: it is the only such function that is
log convex, meaning that the second derivative of the logarithm
of the function is always positive (Artin, 1964, 13). This gives
hope to our claim that there is a unique, infinitely
differentiable function such that f(x+1)=b’® (a log convex
function has to be very smooth), but still, we are not sure.
Perhaps, though, the function for tetration yielded by the
polynomial sequence is, in some way, the "simplest” such
function. This was the case in the example of f(x+1)=f(x),
yielding f(x)=0, instead of some odd sinusoidal function. 1In any
case, we do have a definition for t, which meets our two

criteria.

12
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"Bottom-Up" Pentation

It is also possible to define pentation, the operation after
tetration, under the second version of the generalized
exponential. We should probably call this function p;(x,y), but,
as we will not discuss p; (pentation under the Ackermann
exponential), and as p; might be confused with a polynomial
approximation of degree two, we will simply call bottom-up
pentation p(x,y) (read x pentated to the y).

Now, by the second generalized exponential function,

p(x,y+1) = t;(x,p(x,y)), and p(x,1)=x. Since t;(x,y) = x* '},

p(x, y+1) =p(x, y) PEN*1 (5)

How are we to define this function for non-integral
"pentaponents?" We could use the same approach as we did with t|,
differentiating equation 5 until there are enough differential
equations to define successive degree polynomials. However, the
derivatives of that function would be extremely hard to manage.
We shall try to simplify the problem a bit.

Let us first develop a table for pentation. We know that
p(x,1)=x (the initial condition) and p(x,2)=x*""!, 1o get

p(x,3):

p(x,3)= (X(x""i) ) ((x = hyx-1y '

which simplifies to

p(x,3)=x(x1) (Qsx=t)

Using equation 5 repeatedly, then simplifying, we can get the
following table:

p(x,1)=x,
p(x,2)=x\=",

X= s X1
p(x,3)=x(x( 1) (1 )),

(2-1) (14x% Lage {x-1) (1+x“1),
D (X, 4) =X (x ) ,

This table suggests the following formula:

13
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x(x1)ay)

p(x,y)=x¢

where a is a sequence such that

8,=0, ap,g=a,+x X1 (6)

This can be proven on the natural numbers by mathematical
induction. The first case, n being 1, fits with the definition
of p, since p(x,1) = x, and x*¥{x1"}=0, Assuming the formula is
true for n,

(x-1)=ap

p( X,_n+i ) =t2( X, xx(l-i)an)=( xx(!-i)an) ((x*¥ yx-1)

_x x(x-i)an-x(x-i)r(x-i)an

(x-1)ap
(x-1)ap+(x-1)x
=YX

Xx(x-i)(a,,u"'”an)

By induction, this shows that the sequence in equation 6 is
correct.

A natural step would be to define a, on non-integers. To do
this, we may use the same procedure as when defining t, on non-
integers. This will be easier than trying to define the whole
function, defined by the recursive formula in equation 5. This
is primarily because, as when defining t,, we can define a
function f on an interval [0,1] such that £(0)=0 and £(1)=1,
which greatly simplifies the algebra.

To obtain a quadratic approximation to f, we again assume
differentiability and take the derivative of the recursive
formula in equation 6, replacing a, with f(x) and x with b (so we
don‘t have two different x's). Since f(x+1)=f(x)+b®-Dix),

f' (x+1)=f' (x)+b® V= (1log b)f' (x), which, when we plug in zero
for x, and 0 for f(x), yields f£'(1)=f'(0)(l+log b). Solving the
system of three simultaneous equations, we get that
pP.(x)=(1-2/(2+log b))x*+(2/(2+1log b))x, where p, is the quadratic
approximation to f. Of course, just as in t,, we can take higher
and higher derivatives of f to obtain closer polynomial

14
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approximations.

Once we have f, the limit of the approximating polynomial
sequence, on [0,1], we can define f on all unit intervals after
[0,1] using the formula f(x+1)=f(x)+b®1i=_ somewhat of a
drawback is that there is no simple algebraic inverse formula
which defines f(x-1) in terms of f(x). However, it can be found
approximately using numerical methods.

Once we have defined f for all real numbers, we may define

bottom-up pentation as follows:

p( X Y) _xx(l'-i)f(?-i)

Here are graphs of p(b,x) for two bases, b=.5 and b=1.5,

where x ranges from 0 to 3.
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Interesting Properties of "Top-Down" Tetration
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If we consider the exponential function on the real numbers,

f(x)=b*, for some positive, real base b, and analyze what happens

for higher and higher exponents, we find that if b>1, f(x)
if b=1, the function f£(x)=1 for all x;

increases without bound;

and if b<l, f(x) goes to zero.

One would expect the same thing to occur for top-down

tetration,

the function t,(b,x) increases without bound.

but it does not.

Of course, for large values of b,
However, tetrating

numbers to high tetraponents on a computer yields surprising
results: if bE(1l,~1.444] (-~ meaning approximately), t,(b,x)
approaches a limit from below; if b&E[~.06,1), t,(b,x) oscillates
for a time, but finally settles on a limit; and most
interestingly, if bE(0,-.06), t,(b,x) oscillates more vigorously,

then actually approaches two limits as x goes to infinity.

Here

are the graphs of t,(0.05,x), t,(0.4,x), and t,(1l.4,x) to

illustrate:
T
" ]
0 50 100

Y0

0.5

L 049

To obtain the greatest base b for which lim..(t,(b,x))
converges, we may consider the solutions to the equation b*=x,

since successive answers must equal each other.

we get b=%x.

Here is a graph of that function:

Solving for b,

2

b
| "ein

16
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The greatest b for which lim _(t,(b,x)) converges to one
limit is the maximum value of b on the above graph. To find the
maximum value of this function, we can take the derivative of
b*=x with respect to x, obtaining b*(log b)=1. Substituting x
for b*, we get x(log x**)=1. By the multiplicative rule for
logarithms, log x=1, so x=e. Therefore, b=%e.

Finding the least b for which lim,,(t,(b,x)) converges to
one value, or the greatest b for which it converges to two
values, is a bit more difficult. The desired b must satisfy the
equation

b2H-x, (7)

since we want t,(b,x) to equal t,(b,x+2). It happens that there

are three sets of (b,x) which satisfy this equation on (0,~.06).
First, there is the pair (b,x) which satisfies the equation b*=x.
There are also two pairs, the ones we want, which are the limits
of the tetration function, lim __(t,(b,x)). We want the greatest

b such that we get three roots, or the least b such that we get

one root.

To do this, it would be helpful to look at the graph of
f(x)=b®*-x (zeroes of this function would indicate roots of
equation 7) for values of b that we know are less than the
desired b, and values of b that we know are greater than the
desired b. Here are grabhs of f(x), where b=0.05 and b=0.075:

0.1 T T 0.1 | 1

0 0.5 1 1.5 0 0.5 1 1.5
bxo.0% x b: 079 x
Notice that, in the second graph, the slope where f(x)
crosses the x-axis is negative, while in the first graph, the
slope at the middle zero of f(x) is positive. It seems fair to
assume that, if b is the first b for which there is only one
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root, the zero would be at a horizontal inflection point (at
which f(x), along with its first two derivatives, would equal
zero). If £(x)=0 and f'(x)=0, then we will have two equations in
two unknowns. Unfortunately, they must be solved numerically,
but we still get an expression involving e: the desired b equals
e™. Here is a graph showing y=lim __(t,(b,x)):

yA
e

" A ~

! 1 b

e-e @ V& 4

It is even more interesting that for some complex values of

b, the tetration function has several limits (not only two!).
Here is a graph on the complex plane showing the number of limits
a given base has when it is taken to higher and higher
tetraponents. Each color represents a different number of
limits; for example, the large, blue region near the center
represents one limit (the real line is the line of symmetry).
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Conclusion

The operations of tetration and pentation are indeed
fascinating, and I have only investigated a few aspects of them.
I have found an algebraic way to define bottom-up tetration, but,
as for top-down tetration and bottom-up pentation, I am not sure
that the respective polynomial sequences converge to unique
functions. It would have been much better to find one expression
which works (or something like a power series), and that is one
possible avenue of further investigation. It would also be
interesting to somehow define top-down pentation, as well as
operations past pentation under both generalized exponentials.
Also, inverse operations after exponentiation, such as inverse
tetration, for example, would be interesting to investigate.

Yet another unexplored topic would be to define the
generalized exponentials for non-integral first operands; that
is, to define operations between addition and multiplication, et
cetera, and, perhaps, to define operations before addition.

Then, we would be further generalizing a "generalized"
exponential.

Another point which belongs here is the question of why
tetration, pentation, etc. are not "useful"” in the real world,
while the operations of addition through exponentiation are.

Most mathematicians probably go through their whole lives without
knowing about operations past exponentiation (not particularly
that they should). It is possible that one day, we will discover
these operations’ physical significance (if they have any); right
now, they have none. However, that does not mean that they
should not be studied.
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