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Summary. Tessellations are valuable both conceptually and for analysis in the
study of the large-scale structure of the universe. They provide a conceptual model
for the ‘cosmic web,’ and are of great use to analyze cosmological data. Here we
describe tessellations in another set of coordinates, of the initially flat sheet of dark
matter that gravity folds up in rough analogy to origami. The folds that develop
are called caustics, and they tessellate space into stream regions. Tessellations of
the dark-matter sheet are also useful in simulation analysis, for instance for density
measurement, and to identify structures where streams overlap.

1 Introduction: The Cosmological Dark-Matter Sheet

In Einstein’s theory of general relativity, gravity comes about through the
distortion that matter and energy produce in the four-dimensional manifold
of spacetime. Gravity also causes another manifold that pervades spacetime
to distort and fold: the sheet of dark matter.

Just after the big bang, the matter was almost uniformly distributed,
i.e. the density varied very little from point to point in space. These tiny
density fluctuations are thought to be random quantum fluctuations that were
‘inflated’ in the first instants to macroscopic size.

It is useful to think of the matter occupying vertices of a regular mesh, and
to represent the density fluctuations as small distortions of this mesh. Where
there is a bit more matter than average, the mesh has contracted, and where
there is less matter than average, the mesh has expanded.

Four-dimensional spacetime was discussed above, and also implicitly three-
dimensional space, in which matter moves around. It is useful to think of mass-
element (particle) trajectories in yet another, six-dimensional phase space of
position and velocity. Each particle in the universe can be plotted in this 6D
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phase space, three of the dimensions given by its spatial position, and three
by its velocity.

In phase space, the primordial state of the universe was well characterized
by particles separated from each other in position dimensions, but with lit-
tle separation in velocity (all velocities, after subtracting out the universe’s
expansion, were nearly zero). In this sense, the matter sheet was ‘flat.’ The
position of a particle on the initial, flat sheet is called its Lagrangian position,
while the actual spatial position of a particle is called its Eulerian position.

As time passes, the largest effect on the matter sheet is stretching from the
expansion of the universe, which generally increases the physical spatial sepa-
ration of particles. As is usually done in cosmology, however, we use comoving
coordinates, i.e. we divide out the expansion. The comoving coordinates of
particles at rest with respect to the expansion of the universe do not change.

As time proceeds, gravity also amplifies the small distortions in the matter-
sheet mesh, increasing velocities. The growth of structure in the universe is a
balance between gravity pulling matter together and the expansion of the uni-
verse damping such motions, as seen in comoving coordinates. Nevertheless, in
‘overdense’ regions where the sheet has contracted, more matter accumulates,
so the sheet contracts further. Likewise, underdense regions repel matter, ex-
panding the sheet to form a void.

In overdense regions, the sheet eventually bunches together and folds. Gas
(normal matter) collects in these regions, and forms galaxies. When two gas
streams encounter each other, they collide and shock, to a good approximation
forcing a unique gas velocity at each point.

The dominant form of matter in the universe, dark matter, on the other
hand, only interacts gravitationally. Two dark-matter particles encountering
each other at the same position do not collide, i.e. do not change their tra-
jectories. (In many models, dark matter can very rarely collide, but here we
neglect this possibility.) Often a single point of Eulerian space can have dark
matter flowing with many discrete velocities. Thus (given the spatial continu-
ity of the mapping from initial to final positions), the dark-matter sheet has
folded up, if considered in 6D phase space. Since particles cannot have the
same positions and velocities without also being initially coincident, the mesh
cannot intersect itself.

A schematic example of halo collapse in a one-dimensional universe (with
therefore a two-dimensional position-velocity phase space) is shown in Fig.
1. Particles start out equally separated, but are drawn into the center, their
Lagrangian string winding up into a spiral. The quasi-circularity of the spi-
ral comes from particles oscillating back and forth about the center of the
potential. Different orientations of the initially flat string of dark-matter par-
ticles are colored black (forward) and red (backward). Contiguous regions on
the string that are oriented the same way are called streams. The bound-
aries between streams, folds in the string when projected down to the x-
axis, are called caustics. At caustics, in the limit of infinitesimal particles
and infinite spatial resolution, the densities become infinite. Thus they may
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Fig. 1. A schematic phase-space spiral that corresponds to the collapse of a ‘halo’
in a one-dimensional universe. Patches oriented forwards in position space (i.e. pro-
jecting down to the x-axis) are colored black, while patches oriented backwards are
red. These two possibilities make the set of streams (contiguous patches with the
same orientation) two-colorable. All one-dimensional sets of contiguous regions are
two-colorable, but when we go to two and three dimensions, this property becomes
quite special.
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greatly enhance the chances of observing dark matter, which may collide ob-
servably in very dense environments [Hogan, 2001, Natarajan & Sikivie, 2008,
Vogelsberger & White, 2011].

The rest of this contribution is organized as follows. In Sec. 2, we explain
some characteristics of the structures gravity builds from origami-folding up
the dark-matter sheet. In Sec. 3, we describe tessellations of the Lagrangian
dark-matter sheet along orthogonal axes, and how they can be used to to find
densities natively within the dark-matter sheet, and to find structures an N -
body computer simulation. In Sec. 4, we describe the tessellation produced by
creases in paper origami. In Sec. 5, we describe some parallels between paper
and cosmological origami, particularly how ‘creases’ tessellate the dark-matter
sheet, and some mathematical properties of this tessellation.

2 Properties of structures built from folds in the
dark-matter sheet

The appearance and behavior of caustics in Eulerian space has been exten-
sively studied. Zel’dovich [Zel’dovich, 1970] predicted the formation of caustics
at the stage when the evolution of the density field reaches non-linearity. Fig.
2 illustrates the beginning of the structure formation when a few very thin
concentrations of mass emerged. It is worth noting that in order to avoid
blocking the view only a relatively small sphere cut from the large volume is
shown. The surfaces seen in the figure are the caustic surfaces where density
is formally infinite. A very thin layer of highly compressed matter between
two caustics form the first nonlinear structures which Zel’dovich called pan-
cakes. Initially each pancake consists of three streams of mass moving with
different velocities through each other, as illustrated in Fig. 2. As time passes,
pancakes grow in size, merge with other pancakes and develop an intricate
structure shown in Fig. 3. The number of streams in pancakes rapidly grows,
and in addition, filaments and compact halos emerge. If the flow has no curl
– a condition which holds to a good approximation except in highly nonlinear
regions – Arnold rigorously proved that only six generic types of singularities
exist. According to Arnold’s ADE classification, these are A2 (surfaces shown
in Figures 2 and 3) and A3 (lines seen as the contours of pancakes in those
figures). The remaining four types occur in isolated points: A4 and D4, that
persist for some finite length of time, and A5 and D5, that exist only instan-
taneously. There are also subclasses in some of these classes but the details
are not important for the current discussion.

In the Zel’dovich approximation [Zel’dovich, 1970, Arnold et al., 1982,
Shandarin & Zeldovich, 1989] the singularities can be found directly from the
initial velocity field vi(q) = −∇Φ(q) that completely determines the evolution
via a simple map

xi(q, t) = qi + Dvi, vi ≡
d xi

d D
= vi(q). (1)
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Fig. 2. A few isolated pancakes bounded by caustics are shown at the early stage
of the evolution described by Eq. (1).

Here we use so-called comoving coordinates, that exclude the uniform expan-
sion of the universe. The function D = D(t) monotonically increases with
physical time, and thus can be used as a time coordinate. The coordinates
xi and qi are the Eulerian and Lagrangian coordinates of the fluid particles.
The volume of a fluid element can be found from the continuity equation and
can be conveniently expressed in terms of the eigenvalues λ1(q), λ2(q), λ3(q)
of the deformation tensor dik ≡ −∂vi/∂qk:

V (q, t) = V0(1−Dλ1)(1−Dλ2)(1−Dλ3). (2)

The volume collapses to zero when one factor in parentheses in the above
equation vanishes. At this instant of time the fluid particle is squashed into one
of two dimensional surface elements comprising the caustic surface and then
expands with different parity. If one assumes that three eigenvalues at each
point are ordered [λ1(q) ≥ λ2(q) and λ2(q) ≥ λ3(q)] then the first pancakes
arise around maxima of λ1(q).

For a while only the caustics of A types, related to λ1, occur. Then A-
singularities related to λ2 and λ3 as well as D-singularities related to points
where λ1(q) = λ2(q) or λ2(q) = λ3(q) arise. It is worth remembering that the
points where all three eigenvalues would have the same value do not exist in
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Fig. 3. Pancakes have grown in size and some of them merged into a large connected
structure.

a generic field. Figure 4 shows two types of caustics (red and green) related
to two eigenvalues in a small sphere (not shown).

Even a relatively simple evolution described by the Zel’dovich approxi-
mation results in a very complex structure of caustics characterized by nu-
merous intricate crossings. Unfortunately the Zel’dovich approximation can
be used for a qualitative or crude quantitative analysis of the structure in
the universe only at early nonlinear stages, although straightforward modifi-
cations can improve some aspects of the approximation [Coles et al., 1993,
Sahni & Coles, 1995, Neyrinck, 2012]. The more realistic picture emerging
from cosmological N-body simulations shows that the complexity of the struc-
ture grows with increasing rate in the concentrations of mass, in particular in
halos [Vogelsberger & White, 2011].

The presentation of the N-body results in the form of particle plots is a
far more popular in cosmological literature than other types of illustrations.
Unfortunately the pictures of the particle distributions fail to reveal caustics
in N-body simulations except for the most massive caustics in the simulations
of a single halo with billions of particles [Vogelsberger & White, 2011].

Probing the caustic structure in gravitationally bound halos is a difficult
problem which has not been properly addressed until rather recently. White
& Vogelsberger [White & Vogelsberger, 2009] proposed a method to detect
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Fig. 4. Caustics related to two eigenvalues are shown by different colors. The nice
smooth edges of caustics are due to cutting by an enclosing sphere (not shown).

caustic crossings in a running simulation, watching the deformation of small
mass elements around particles at each timestep. Very recently, Shandarin et
al. [2012] and Abel et al. [2011] more explicitly tracked the dynamics of the
phase-space sheet, crucially using a tessellation within it. This allows greater
progress to be made from a single snapshot. Although the methods differ in
some details, the basic idea was the same in both studies. The advantage of a
tessellation technique over a particle representation is illustrated in Figures 5
and 6. Figure 5 shows the particles lying on two caustic surfaces related to λ1

and λ2 . Figure 6 using exactly the same information as the dot plot shows
two families of caustics in red and green. Now the particles are treated as the
vertices of the tessellation of the phase space sheet. In the next section we
briefly explain the method.

3 Tessellations within the dark-matter sheet for
studying caustics

In this section, we explore tessellations that are useful for finding and analyz-
ing two-dimensional creases in three-dimensional space.
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Fig. 5. A particle representation of the caustics.

First, though, we briefly review some techniques that work purely in Eu-
lerian space to detect structures. These have the clear advantage that they
can be applied to observations in principle, in which the initial conditions are
not known. Some of these Eulerian techniques are entirely local, depending on
the local arrangement of mass [Hahn et al., 2007, Aragón-Calvo et al., 2007,
Sousbie et al., 2008, Sousbie, 2011]. Another approach is global, defining voids
to tessellate space. For instance, voids can be defined as density depressions
outlined by a watershed transform [Platen et al., 2007, Neyrinck, 2008]. In
this framework, walls, filaments, and haloes are defined according to where
voids meet each other, and the dimensionality of borders separating them
[Aragón-Calvo et al., 2010]. Another dynamical algorithm for void-finding
[Lavaux & Wandelt, 2010] estimates orbits of particles in the final conditions,
designed to detect structures in the primordial density field.

The first step in the Lagrangian-tessellation algorithm for studying caus-
tics is the ‘triangulation’ of Lagrangian space itself. The uniform cubic mesh
often used for generating initial positions and velocities for the N-body sim-
ulations is triangulated by subdividing each cubic voxel of the mesh into five
tetrahedra. The vertices of these tetrahedra are the particles being tracked
through the simulation, which can be alternatively thought of as vertices of a
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Fig. 6. Tessellation representation of the same structure as shown by the particles.

mesh covering the phase-space sheet. The tetrahedra represent the fluid ele-
ments that continuously fill the space. The mass particles moving in the course
of the gravitational evolution deform the tetrahedra but do not fracture the
continuity of the three-dimensional phase-space sheet. The tetrahedra change
their parity every time they experience collapse in a two-dimensional triangle.
Keeping the initial order of the vertices in each tetrahedron, one can identify
the change of parity by the change of the sign in the volume of the tetrahedron
as computed with a determinant.

The next step is to select the triangle faces shared by two neighboring tetra-
hedra with opposite parities. This completes the triangulation of the caustic
surfaces at every time step. Figs. 2 and 3 show the evolution of the structure
described by the Zel’dovich approximation. In this first-order theory, by Eq.
(2), the parity of a fluid element can be changed at most three times. Given
initial Gaussianity (which holds to a good approximation), one can easily find
the statistics of parity evolution that is determined by the probability density
function of three eigenvalues, λ1, λ2, λ3. For instance, no more than about
92% of all fluid particles may experience one parity transition since in about
8% of the initial volume λ1 is negative [Doroshkevich, 1970]. In the real world
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as well as in cosmological N-body simulations the number of parity changes
is enormous.

Although the caustics are the boundaries between the regions with differ-
ent number of streams there is no direct general relation between the number
of streams and number of parity transitions due to nonlocal character of struc-
ture evolution described by mapping. For example, the interior part of the red
cusp in Fig. 4 above the green caustic contains a different number of streams
than the interior part lying below the green caustic. The particles lying on
the crossing line of two caustics came from very different parts of Lagrangian
space and their paths could be extremely weakly related.

These new numerical techniques allow a deeper insight into the complex
nonlinear evolution of the large scale structure in the universe. An example of a
useful outcome of the studies of caustics is a unique definition of physical voids
as the regions of one-stream flows. An N-body simulation of the ’standard’
ΛCDM model showed that the total volume occupied by physical voids is
about 93% of the total volume [Shandarin et al., 2012].

Such tetrahedra also allow density estimates within the dark-matter mesh
[Abel et al., 2011]. The densities within each stream can then be added up
to a density estimator in many ways more robust than Eulerian density
estimates that ignore the initial arrangement of particles. The most com-
mon density estimates in cosmology are Eulerian, volume-weighted density
estimates, for example counting the number of particles in each cell of a
cubic grid. There are also mass-weighted density estimates (returning the
density separately at each particle), for example using a Voronoi or Delau-
nay tessellation, e.g. [Schaap & van de Weygaert, 2000, Neyrinck et al., 2005,
van de Weygaert & Schaap, 2009]. These are usefully parameter-free and adap-
tive, but it appears that a truly Lagrangian density estimate such as that of
[Abel et al., 2011], which takes into account the initial arrangement of parti-
cles and treats the dark-matter sheet as a truly continuous sheet, does not
suffer from particle discreteness as much as the Eulerian estimates.

Tracking the parity as in these Lagrangian-tessellation methods allows
collapsed structures to be detected, but does not immediately give their mor-
phology (i.e. whether they are pancakes, filaments or haloes). Keeping track
of the axes along which particles cross each other gives this extra information
[Falck et al., 2012], in an algorithm called origami (Order-ReversIng Grav-
ity, Apprehended Mangling Indices). In the one-dimensional halo of Fig. 1, a
natural place to put the boundary of the structure is at the transition between
where one and three streams overlap when projected to the x axis. In the full
three dimensions, structures are classified according to how many perpendic-
ular axes particles within them have been crossed along by other particles.
Particles in voids, walls, filaments and haloes have been crossed along 0, 1,
2, and 3 perpendicular directions. This a conveniently parameter-free, objec-
tive, geometrical, and dynamical identification of structures and placement
of their boundaries. However, this simple particle-crossing criterion does not
distinguish substructures from larger structures.
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4 Origami mathematics

Now we further explore the origami analogy to structure-formation. There has
been much mathematical work in origami, most of it recent in the ancient his-
tory of the art form [Row, 1966, Martin, 1998, Lang, 2003, Hull, 2006]. ‘Flat
origami’ is the class of origami most easily relatable to large-scale structure.
In flat origami, folding of a two-dimensional sheet is allowed in three dimen-
sions, but the result is restricted to lie flat in a plane, i.e. it could be squashed
between pages in a book without acquiring any new creases. The class of flat-
foldable origami is quite large, for example encompassing the paper crane,
similar to the model shown in Fig. 7.

There are several theorems that have been proven about flat origami
[Hull, 1994, Hull, 2002]. One is the two-colorability of polygons outlined by
origami crease lines, as shown in Fig. 1 in one dimension. Two colors suffice
to color them so that no adjacent polygons share the same color.

Fig. 7. Two-coloring of the polygons outlined by creases in an origami ‘traditional
Japanese flapping bird’ (similar to a crane). Polygons facing ‘up’ (out of the page
in the leftmost diagram, with the head facing to the left) are colored white, while
polygons facing ‘down’ (into the page in the leftmost diagram) are painted gray.
The crane has been unfolded for the rightmost diagram. Creases are shown as lines
here; the polygons outlined by them may be colored with only two colors, such that
polygons straddling creases never have the same color. Figure from [Hull, 2006],
courtesy Tom Hull.

To see why two colors suffice, consider the bird in Fig. 7. Both sides of it
are shown, along with its appearance when unfolded. Each polygon is colored
white or gray according to whether the polygon is facing ‘up,’ i.e. with the
same orientation as it did initially, or ‘down,’ if it has been flipped over. This
uniquely colors each polygon, and each crease does indeed divide ‘up’ from
‘down’ polygons. According to the four-color theorem (e.g. [Wilson, 2002]), a
general set of planar regions is colorable by four colors. So, the ability to pro-
duce a flat-foldable origami design from a crease pattern reduces the so-called
chromatic number (the number of colors necessary such that neighboring re-
gions are not colored the same) from four to two.

A work of flat origami can be thought of as a function (specifically, a
continuous piecewise isometry) mapping the unit square (the unfolded sheet
at right in Fig. 7) into the plane. Each crease produces a reflection, reversing
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the direction of the vector on the paper perpendicular to the crease. The
function is defined on each polygon by a sequence of these reflections. The
color in each polygon corresponds to its parity, i.e. depending on whether
the number of reflections used to define the function on that polygon is odd
or even. The parity can also be measured locally with the determinant of
the matrix defining the function on the polygon; we will also use this latter
definition in the cosmological case below.

Besides two-colorability, there are other properties that flat-foldable crease
patterns have. For example, Maekawa’s theorem states that in a flat-foldable
crease pattern, the numbers of ‘mountain’ and ‘valley’ creases around a vertex
differ by two. (A mountain crease becomes folded to form an upward-pointing
ridge; a valley crease is folded in the opposite way.) Maekawa’s theorem is
likely to be applicable to a stretchable 3D cosmological sheet, as well, in a
more complicated form, but we have not investigated this possibility.

Even for paper origami, a difficult problem is to test that an arbitrary
crease-pattern is physically flat-foldable without the paper intersecting any
folds; this is an NP-complete problem [Bern & Hayes, 1996]. There are further
results that, for instance, describe the angles around vertices, but they depend
on the non-stretchability of the origami sheet, making them inapplicable to
the cosmological case.

5 Origami Large-Scale Structure

Moving from paper origami to cosmological structure formation introduces
a few changes. The manifold (sheet) has three instead of two dimensions. It
folds in six dimensions (three position, and three velocity) instead of three.
The sheet also stretches inhomogeneously, stretching more in voids than in
dense regions. In dense regions, it can also stretch violently in the velocity
dimensions.

In spite of these differences, it is still possible to approximate two-
dimensional large-scale structures with origami designs. Fig. 8 shows a work
of flat origami that bears some resemblance to the cosmic web of filaments
and clusters in cosmology. The ‘voids’ are Voronoi cells generated from black
pencil-marks on the paper. Voronoi models of large-scale structure are good
heuristic models of cosmological structure formation [Icke & van de Weygaert, 1987,
Kofman et al., 1990, Hidding et al., 2012]. The present figure corresponds
most closely to a Zel’dovich-approximation evolution of particle displace-
ments, in which structures fold up when expanding voids collide, but overshoot
and do not undergo realistic further collapse.

Fig. 9 shows two crease patterns: one that folds up into a single schematic
‘galaxy,’ and one that folds up into a hexagonal void surrounded by six
galaxies. They have proven useful at public-outreach events, and are avail-
able at http://skysrv.pha.jhu.edu/∼neyrinck/origalaxy.html. These
designs are based on elements of Eric Gjerde’s ‘Tiled Hexagons’ pattern, in
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Fig. 8. A Voronoi origami tessellation that resembles cosmological voids, filaments
and haloes in a two-dimensional universe. If the work were unfolded, the polygons
outlined by creases would be two-colorable according to which way the polygon is
facing. E.g. ‘voids’ and the topmost polygons in ‘haloes’ could be colored black, and
the paper turned upside down within the ‘filaments’ could be colored white. Design
and photo by Eric Gjerde (http://www.origamitessellations.com/), used with
permission.

his Origami Tessellations book [Gjerde, 2008], which contains several other
interesting origami tessellations.

These figures are interesting pedagogically, but also suggest a reason why
filaments are so common in the universe. Here, galaxies, or knots, cannot
form without associated filaments. This requirement comes from the non-
stretchability of origami paper (a property which the dark-matter sheet lacks),
but it still suggests a strong tendency for filaments to form along with galaxies.
It also suggests a reason why galaxies tend to accrete much angular momen-
tum: it seems to be easier to fold a galaxy when the filament has a nonzero
impact parameter with respect to the center of the galaxy. When the accreting
matter arrives in the galaxy, it then torques it up. These are not proofs, but
interesting suggestions.

Moving toward more mathematical rigor, we now consider local parities
of patches on the cosmological sheet. The parity may still be defined in the
same way as in flat origami, and it may have only one of two values (positive
or negative). The parity at a particle is measurable from how the particles
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Fig. 9. Crease patterns that fold up into schematic ‘galaxies’ surrounded by fila-
ments. Solid lines are mountain folds, folding to form a ridge, and dashed lines are
valley folds. The arrows indicate the direction of matter flow within the folded-up
filaments.

initially adjacent to it have distorted around it. Mathematically, the parity is
the sign of the determinant of the deformation tensor that takes initial to final
coordinates; see for example [White & Vogelsberger, 2009, Neyrinck, 2012] for
details.

5.1 Streams and caustics in Lagrangian space

The dark-matter sheet folds up in Eulerian space in an overwhelmingly rich
way, visually corresponding somewhat to rococo art. Beautiful figures of the
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structure that develops can be seen in [Vogelsberger & White, 2011], for ex-
ample.

We defined caustics and streams for a 1D universe around Fig. 1, and
use the same definitions in a 3D universe. A stream is a contiguous three-
dimensional region with the same orientation, or parity. A caustic is a two-
dimensional surface separating streams from each other. Defined this way, a
caustic indeed corresponds to a fold, since the parity swaps if one moves across
it.

By definition, then, Lagrangian space (the dark-matter sheet) is tessellated
by streams that are outlined by caustics. In addition, the streams are two-
colorable, just as in paper origami. This is because the parity may take only
two values, and changes as one crosses a caustic along the sheet.

Two-colorability may seem hopelessly academic, and indeed it does not
have obvious observational consequences. But in fact it greatly restricts the
arrangement of streams on the unfolded dark-matter sheet. A tessellation in
greater than two dimensions has in principle no bound on its chromatic num-
ber (the number of colors required). In relation to the famous four-color the-
orem (four colors suffice to color any planar arrangement of regions), Guthrie
[Guthrie, 1880] discussed the impossibility of restricting the chromatic num-
ber of an arrangement of solid regions in three dimensions. He constructed a
set of arbitrarily many long sticks, each of which touches all others. Such an
arrangement is possible, for example, if each stick is slightly rotated from its
neighbor, especially if the sticks flex. In this case, the chromatic number is
bounded only by the number of sticks.

In graph theory, a two-colorable graph is called bipartite. Using the graph-
theory terms of ‘vertices’ that are linked by ‘edges,’ the vertices of the cos-
mological bipartite graph are the three-dimensional stream regions, and the
edges are the caustic surfaces between them.

At least one whole book is devoted to the subject of bipartite graphs
[Asratian et al., 1998]; here we list a few of their properties, translating into
cosmological terms. First, there is no path (stepping from stream to stream
through caustics) starting and ending at the same stream that consists of an
odd number of steps. Another result, König’s Minimax Theorem, pertains to
the necessity of caustics to form streams. It states that the minimum number
of streams needed to touch all caustics with streams equals the maximum pos-
sible number of caustics involved in a matching between streams of opposite
parity. A ‘matching’ is a set of caustics linking pairs of streams, such that no
stream is touched by more than one caustic. Considering the dual graph, in
which streams and caustics swap roles, König has another result. His Coloring
Theorem for bipartite graphs applies to the dual graph of caustics joined by
streams: the chromatic number for the dual graph equals the maximum num-
ber of caustics around a single stream. Removing the bipartite property of
the graph of streams joined by caustics, its dual graph would generally have
a larger chromatic number.
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We close this section with a technical caveat about this stream-caustic
definition. In principle, the stretchable cosmological sheet can fold in a way
that is impossible for paper origami. Cosmological caustics may form through
spherical or cylindrical collapse, not just planar collapse. Like planar collapse,
spherical collapse reverses parity, but cylindrical collapse does not; it simply
produces a 180◦ rotation in the two axes perpendicular to the cylinder. How-
ever, in a physically realistic situation, the probability that more than one
axis will collapse exactly simultaneously is zero, so we adopt the view that
caustics always form one-at-a-time.

5.2 Simulation measurements

Fig. 10 shows the folding up of a 2D cosmological sheet of particles from
a ΛCDM (the current, observationally successful model of cosmology) 3D
gravitational simulation, with its initial small-scale fluctuations dampened
for clarity. In the top panels, pixels represent particles in the square grid of
Lagrangian coordinates; in origami terms, this is the flat sheet before folding.
The bottom panels show particles in Eulerian coordinates.

The ‘morphology’ of the left panels describes whether they are void, fila-
ment, sheet, or halo particles. This morphology is measured using the origami
[Falck et al., 2012] algorithm discussed above (not to be confused with the
origami analogy itself).

In the right panels, particles are colored primarily by parity (white/orange
or black/blue). Particles which have been flipped by caustics an even number
of times (including zero) and have the original, right-handed orientation are
black/blue; particles that have been flipped an odd number of times and have
left-handed orientation are white/orange. In the finer color gradation (along
the white/orange or black/blue spectra), the upper-right panel additionally
shows the magnitude of the volume each particle occupies on the dark-matter
sheet (inversely proportional to its density). Note that the magnitude is quite
small in the cores of halo regions, because mass elements shrink considerably
in high-density halo regions.

There is some agreement between outer caustics identified by origami
morphology (the boundaries between black and non-black regions) and as
measured by parity (the outermost boundaries between dark blue and light
orange regions), but the agreement is not perfect. See [Neyrinck, 2012] for
further discussion and details.

Fig. 11 is the same figure as Fig. 10, except that the simulation was run
without smoothing the initial conditions, causing the true amount of small-
scale structure to appear. This structure in Fig. 11 makes the parity map
(the upper-right panel) much more cluttered. There are many visible extended
streams (patches of identical parity), especially those that correspond to large
voids, but much of the plot looks essentially random. Note also here that the
Lagrangian patches that correspond to voids are much smaller than in the
previous figure, indicating that the dark-matter sheet has stretched more.
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Fig. 10. The folding of a cosmological sheet (top, unfolded; bottom, folded). Quan-
tities were measured from a 2D sheet of particles from a 3D ΛCDM N -body simula-
tion. The 2562 particles share the same z-coordinate in the initial-conditions lattice,
where z points out of the page. Before running the simulation, the initial conditions
were smoothed with a 1 h−1 Mpc Gaussian window, to inhibit small-scale structure
formation. Top panels use Lagrangian coordinates, in which each particle is a square
pixel in a 2562-pixel image. In the bottom panels, particles are shown in their ac-
tual present-epoch Eulerian (x, y) coordinates, projecting out the z coordinate (in
which the slice does have some extent). In left-hand panels, void, wall, filament and
halo origami morphologies are shown in black, blue, yellow and red, respectively.
In right-hand panels, particles are colored according to J , i.e. the volume of their
fluid element times its parity. Black/blue particles have right-handed parity (as in
the initial conditions), and white/orange particles have swapped, left-handed parity.
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Fig. 11. Same as Fig. 10, except measured from a simulation with full initial power,
i.e. unsmoothed initial conditions.

Given the near-randomness of the parity deep within haloes, it seems that
particles here have crossed many, many caustics. We caution, however, that
some of this apparent randomness could be ‘noise’ from finite resolution.

6 Conclusion

A natural tessellation of the final, observed matter and galaxy distribution
(known as Eulerian space) is into voids, as explored elsewhere in this volume.
Tessellations in Eulerian space are also of great use for measuring quantities
such as densities and velocities adaptively. In this contribution, we described
tessellations of the initial dark-matter sheet (known as Lagrangian space). The
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natural tessellation in this case is into streams, bordered by caustics. Also as
in the Eulerian case, tessellations are useful for analysis, for detecting stream-
crossings and estimating densities natively within the dark-matter sheet.
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