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ABSTRACT
We have developed an algorithm, called VOBOZ (VOronoi BOund Zones), to find haloes in
an N-body dark matter simulation; it has as little dependence on free parameters as we can
manage. By using the Voronoi diagram, we achieve non-parametric, ‘natural’ measurements
of each particle’s density and set of neighbours. We then eliminate much of the ambiguity in
merging sets of particles together by identifying every possible density peak, and measuring
the probability that each does not arise from Poisson noise. The main halo in a cluster tends to
have a high probability, while its subhaloes tend to have lower probabilities. The first parameter
in VOBOZ controls the subtlety of particle unbinding, and may be eliminated if one is cavalier
with processor time; even if one is not, the results saturate to the parameter-free answer when
the parameter is sufficiently small. The only parameter that remains, an outer density cut-off,
does not influence whether or not haloes are identified, nor does it have any effect on subhaloes;
it only affects the masses returned for supercluster haloes.

Key words: methods: data analysis – methods: N-body simulations – galaxies: formation –
galaxies: haloes – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

A crucial step in comparing N-body simulations to the observed
galaxy distribution is to identify the possible sites of galaxy forma-
tion, called dark matter haloes, in the simulations. Unfortunately,
the concept of a dark matter halo is not precisely defined. There is
no firm observational definition of dark matter haloes, because they
can only be observed indirectly, e.g. through gravitational lensing.
There are a couple of possible theoretical definitions. One of these
is a region exceeding a certain overdensity, such as the canonical
overdensity of virialization, 200. This is often used when seeking
halo occupation distributions (e.g. Berlind & Weinberg 2002), which
statistically characterize the number of galaxies inside haloes (im-
plicitly dark matter hereafter) as a function of halo mass. However,
if we want to look beyond the statistical placement of galaxies in-
side haloes, we should use another definition of a halo (or subhalo):
a density peak to which some mass is gravitationally bound. In the
language of an N-body simulation, a particle is the core of a halo
if it is a local density maximum, and there exists at least one other
particle bound to it.

One of the first halo-finding algorithms (HFAs), still in wide use
because it is so fast and conceptually simple, is the Friends-of-
Friends algorithm (Davis et al. 1985). This HFA groups together all
particles within a specified linking length, a free parameter which

�E-mail: Mark.Neyrinck@colorado.edu

is usually set by the canonical overdensity of virialization. Friends-
of-Friends is useful if one is looking for large structures exceeding
this overdensity, but it is incapable of finding subhaloes within these
structures, and sometimes structures are unduly linked if there hap-
pens to be a stream of particles connecting them.

Most HFAs developed since Friends-of-Friends begin with an ex-
plicit measurement of the density, which is not uniquely or obviously
defined given a set of particles. In one Eulerian method (DENMAX;
Bertschinger & Gelb 1991), each particle is smoothed with a Gaus-
sian of a fixed spatial resolution. As with the Friends-of-Friends
algorithm, the free parameter is set roughly by the critical overden-
sity of virialization. While this value of the parameter tends to give
virialized objects, it smears out subhaloes (Neyrinck, Hamilton &
Gnedin 2004, hereafter NHG); one runs the risk of missing struc-
tures smaller than any fixed smoothing length. On the other hand,
using a smoothing length that is too small misses the less dense
outskirts of haloes. Another HFA, called BDM (Klypin & Holtzman
1997), finds density maxima by placing spheres randomly in the
simulation, and then moving them at each iteration to the centre
of mass of particles within them. Maxima are then joined if they
lie within a specified radius. Another way to find the density, called
SKID (Weinberg, Hernquist & Katz 1997; Jang-Condell & Hernquist
2001) uses a Lagrangian, smoothed particle hydrodynamics (SPH)
density estimate based on the distances to the nearest N dens particles.
This density estimate is arguably an improvement over DENMAX be-
cause there is no fixed spatial resolution, but in its place there is an
arbitrary, fixed mass resolution. This is undesirable because haloes
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can exist with only two particles, which a fixed mass resolution is
likely to miss.

The next step in halo finding is to group the particles together. In
DENMAX and SKID, particles slide along density gradients until they
reach density maxima. In HOP (Eisenstein & Hut 1998), which uses
a Lagrangian density estimator similar to that in SKID, each particle
‘hops’ to the densest particle among its neighbours, and continues in
this manner until it reaches a local density maximum. Then, groups
of particles are joined together if saddles linking them exceed a spec-
ified density, another free parameter. Recently, Kim & Park (2004)
have developed another HFA, called PSB. Around each density max-
imum (calculated with a small spatial smoothing length), PSB finds
the largest isodensity contour enclosing only that peak, using a cou-
ple of parameters to do so. It then assigns neighbouring particles to
density peaks using considerations such as whether they are energet-
ically bound, and whether they lie outside the tidal radius. It seems
that PSB reliably uncovers subhaloes, but it does require several free
parameters.

2 M E T H O D

Our HFA, VOBOZ (VOronoi BOund Zones), identifies haloes in three
steps: (i) measuring the density at each particle; (ii) grouping sets
of particles around density maxima which plausibly form a halo
using only spatial information; (iii) unbinding particles from haloes
if their velocities exceed the escape velocity from their halo at their
position.

VOBOZ also performs a measurement new to the world of HFAs:
it measures the probability that each halo did not arise from Poisson
noise. Such a measurement is quite useful for subhaloes within
haloes which may or may not exist. Previous HFAs either identify
or do not identify questionable haloes; the results do not indicate
haloes which were just barely identified, nor haloes which barely
escaped detection.

2.1 Calculation of the Voronoi diagram

The method we use to calculate the densities of particles employs
the Voronoi diagram (VD), a unique, non-parametric tessellation
of a space containing particles. Ideas related to the VD have ex-
isted for centuries, but Voronoi (1908) introduced it in its modern
form. The standard reference is Okabe et al. (2000), which contains a
survey of Voronoi applications in an extensive array of fields includ-
ing biology, forestry, archaeology, urban planning and meteorology.
A reference with a view toward astronomy is provided by van de
Weygaert (1994), who, with his collaborators, has championed the
use of Voronoi methods in various contexts related to large-scale
structure and cosmology, starting with the description of voids as
polyhedra (Icke & van de Weygaert 1987). A major current astro-
nomical application of Voronoi methods is in identifying clusters of
galaxies from surveys (e.g. Ebeling & Wiedenmann 1993; Ramella
et al. 2001; Kim et al. 2002; Marinoni et al. 2002). The Delaunay
tesselation field estimator (DTFE; Schaap & van de Weygaert 2000),
essentially the same as our density estimator (it uses the dual of the
VD, the Delaunay tesselation), has been shown to be superior to
SPH (Pelupessy, Schaap & van de Weygaert 2003; Schaap 2004).
Quite recently, Arad, Dekel & Klypin (2004) used the DTFE to ex-
plore the properties of six-dimensional position–velocity space in
an N-body simulation.

The VD of a set of particles P is defined as follows. The Voronoi
‘cell’ V (pi) around a particle pi in P is the interior of the polyhedron
of points closer to pi than to any other particle. The most intuitive
way to find a Voronoi cell around pi is, for each other particle pj

Figure 1. A two-dimensional VD of particles from an N-body simulation.

in P, to put up planes perpendicularly bisecting the line segments
connecting pi and pj. V (pi) will then be the polyhedron formed
by these bisecting planes which contains pi. Fig. 1 shows a two-
dimensional VD of a set of particles from an N-body simulation. A
Voronoi ‘neighbour’, or ‘adjacency’, of a particle pi is a particle pj

such that V (pj) borders V (pi); the set of Voronoi neighbours of pi

demarcate V (pi).
We may then define the density of a particle as 1/Volume[V (pi)].

Not only does the VD give a unique density, with no free parameters,
and with infinite spatial resolution, but it gives, arguably, the most
local density estimate that contains meaningful information, uncov-
ering every possible morsel of structure. It also returns a ‘natural’
set of neighbours for each particle, with no fixed mass resolution.
In addition, it benefits from having been studied extensively. Many
statistical properties of Poisson VDs (VDs applied to Poisson point
processes) are well known, and sometimes are even analytically cal-
culable. For example, the average number of neighbours of a particle
in a three-dimensional Poisson VD is (48π2/35) + 2 ≈ 15.535, with
a standard deviation of 3.32 (Okabe et al. 2000).

To calculate the VD, we used the Quickhull algorithm (Barber,
Dobkin & Huhdanpaa 1996), which runs in O(n log n) time, where
n is the number of input points. We also used the QHULL (the imple-
mentation of Quickhull) package to compute volumes of polyhedra.
Because QHULL’s memory requirements become prohibitive when it
is run directly on a large set of particles (∼10 GB for a 1283-particle
box), and also to produce intermediate outputs (valuable in inter-
rupted runs), we split the box on which the VD is calculated into
subboxes. A user constrained by memory may have to split the box
into many pieces for them to fit into memory.

It is important to check that dividing the box does not alter par-
ticles’ volumes and sets of neighbours. See Appendix A for details
of how we do this.

2.2 Zones

We believe that the VD gives the best way of finding densities and
adjacencies in a set of particles, and a prospective user of VOBOZ may
wish to use it for this alone. Our method to group particles was more
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Figure 2. Zoning. The top panel shows a raw set of particles. The mid-
dle panel shows the two-dimensional VD of these particles, with cells
shaded according to their areas. The bottom panel shows how these par-
ticles are partitioned into zones, with the peak of each zone indicated with a
square.

empirically found, but it does seem to work quite well in detecting
even the smallest structures, and also in efficiently mapping out
larger structures.

It is easy to define density maxima among particles given their
densities and neighbours: a particle is a density maximum if its den-
sity is higher than any of its neighbours’ densities. To find particles
which may belong to that particle’s halo, we send each particle in the
set to its neighbour with the highest density, and repeat this process
until every particle is at a density maximum, a procedure similar to
that in HOP. We define a density maximum’s ‘zone’ to be the set of
particles which jump to it; we define a zone’s ‘peak’ to be its density
maximum. Fig. 2 shows this process.

Figure 3. A schematic density field containing a halo with two subhaloes.
If we put this surface in a water tank, and gradually reduce the water level,
the central peak will be the first to emerge. As we reduce the water level, no
higher peak is uncovered, so the entire region belongs to the central peak. If
we reduce the water level from the peak of the left subhalo, we will reveal a
landbridge to a higher peak when the water reaches the upper grey plane. If
we do the same for the subhalo on the right, a landbridge to a higher peak
will appear at the lower grey plane. We define the boundaries of each subhalo
to be a density contour at the lowest density on the landbridge (at the height
of its grey plane), called the strongest link density, ρ sl. The probability that
a subhalo is real depends on the ratio of its peak density to ρ sl.

However, we are far from finished with our analysis. In a Poisson
VD, we found that 1/13.6 of the particles were density maxima.
In our large-scale structure simulations, we typically found that
about 1/19 of the particles were density maxima. This is not an
overwhelming difference, so many of the density maxima seem
to come from Poisson noise. ‘Zoning’ provides a convenient, fast
partition of the set of particles, but zones can be oddly shaped,
not necessarily resembling idealized mountains around peaks. This
is for a few reasons: particles’ spatial positions are not explicitly
considered in zoning, only their densities and adjacencies. Also, the
fact that the peak of a particle’s zone lies on the steepest path up
the density slope does not mean that there is no other zone to which
the particle could conceivably belong. For example, if a particle is
a local density minimum, it could be argued that its first jump could
be to any of its neighbours. Many zones turn out to be fake, and the
ones which lie at the centres of real haloes may contain far fewer
particles than they should, because the haloes have been partitioned
into many, often spurious, zones. However, we contend that it is a
good thing to partition the particles into potential haloes in the finest
(i.e. least coarse) possible way, which this arguably accomplishes.

It is therefore necessary to join some zones together; we do so by
referring to the following intuitive aid, illustrated in Fig. 3. Imag-
ine that the particles occupy a two-dimensional surface with height
given by their densities, enclosed in a water tank. We perform the
following procedure for each zone z. Fill the tank until the peak of
z is submerged, and then drain the water until a path emerges from
the peak of z to the peak of another zone. The lowest-density particle
on that path, with density ρ sl, is the ‘strongest link’ z has with any
neighbouring zone. The strongest link is the highest-density particle
in the set of lowest-density particles on each path from the peak of
z to the peaks of adjacent zones. In practice, this particle is quickly
found, because we only need to search the border particles of each
zone.

We continue adding adjacent zones to z until a zone joins whose
peak exceeds that of z in density; we call the end product a halo.
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The zones are not always joined one at a time; to continue the anal-
ogy with the water tank, the strongest link density ρ sl decreases
monotonically, often uncovering multiple zones at once. Thus, all
zones connected to z by links with densities exceeding ρ sl are con-
sidered as a single unit to merge with z, and the existence of one
particle in this collection of zones with density higher than that of
the peak of z will break the merger.

We have not yet discussed a criterion to halt the growth of large
haloes well out into voids; without one, the zone with the dens-
est particle in the simulation would grow to encompass the entire
simulation. We tried to find some mathematical criterion to stop un-
ambiguously at the edge of a halo, but had little success; everything
we tried was easily tricked by complex geometries. One reason for
the unbinding process, discussed in Section 2.3, is to mitigate this
effect. Although there could exist a foolproof, parameter-free halo
edge-detection method which has eluded us (and which, with any
luck, will find its way into VOBOZ version 2.0), we reluctantly in-
troduce a parameter ρmin to limit the descent of ρ sl, so that haloes
do not grow across voids. The presence of a parameter is inherently
undesirable, but it only affects the size of the largest haloes which
are unquestionably present, and not the masses and identification
of subhaloes, which is where the most headway is to be made in
HFAs. We discuss this parameter further in Section 3.1. We should
also note that with haloes defined in this way, particles may belong
to multiple haloes, e.g. to both a subhalo and its parent halo. While
this is a matter of convention, we believe it is better to include sub-
haloes in the masses of their parents to which they gravitationally
bound, and not to excise them simply because they are bound by
themselves as well.

In other HFAs with Lagrangian density estimators like HOP, many
spurious zones arise as in VOBOZ, but the problem is not directly ad-
dressed; zones are merely merged together if they exceed a density
cut-off, and the substructure is forgotten. We use a different philos-
ophy in VOBOZ: we measure for each halo or subhalo the probability
that it exists, i.e. that it did not arise from Poisson noise.

This probability is judged according to the ratio r (z) of the peak
density of z to the critical ρ sl of the particle linked to a zone with a
higher-density peak. We can turn this ratio into a probability by sub-
jecting a Poisson set of particles to the same algorithm, and forming
a cumulative distribution of r (z) for its zones. The probability that
a halo is real is then P(r ) = P Poisson(r ′ < r ), where PPoisson is drawn
from the Poisson realization. Fig. 4 shows P(r ) dr , the probability
that a halo is fake as a function of its ratio r (z). The dotted line in
Fig. 4 is a fit we have made to P Poisson(r ′ < r ):

1 − PPoisson(r ′ < r ) = 1.077

r 1.82 + 0.077r 4.41
. (1)

Table 1 shows the ratios, calculated using equation (1), which
correspond to values of the standard Gaussian sigma: 1σ corre-
sponds to a probability of 68.3 per cent, 2σ to 95.4 per cent, 3σ to
99.7 per cent, etc. By setting equal the two terms in the denominator
of the fit expression, we find that there is a break where the power
law steepens at r ≈ 2.69 (1.7σ ). This might then be a good candidate
for a natural cut-off in r to separate real from fake haloes, with no
reference to the type of data being analysed. However, we do not
recommend imposing a strict, a priori cut-off in r.

It might behove us to test this fit with an even larger Poisson
simulation, but it is academic to test whether a halo is fake with a
10−4 or 10−5 probability; the probabilities matter the most when a
halo is questionable. It is perhaps more relevant to see what happens
if a non-uniform distribution (such as that in an N-body simulation)
is Poisson-sampled. We put a single giant halo with a density profile

Figure 4. The cumulative probability function P(r ′ < r ) of the ratio r (z)
between the peak density of a zone and its critical strongest link density
ρ sl, from various Poisson simulations. The left panel shows 1 − P(r ′ < r )
on a logarithmic scale, while the right panel shows P(r ′ < r ) on a more
familiar linear scale on [0, 1]. The dashed curves are drawn from haloes in
a uniform Poisson simulation with 643 particles, and the solid curves in one
with 1283 particles. The function does seem to converge as particle number
increases. The dotted curve (indistinguishable in the right panel) shows the
fit in equation (1). The dot-dashed curve shows P(r ′ < r ) of subhaloes in a
large halo with density profile ρ ∼ r−2, Poisson sampled with 643 particles.

Table 1. Ratios r (z) between a zone’s peak and its
strongest link density, corresponding to probabilities
P(r ′ < r ), calculated using equation (1).

No. σ 1 − P(r ′ < r ) r (z)

0 1 1
1 0.317 1.69
2 4.55 × 10−2 3.30
3 2.70 × 10−3 6.82
4 6.33 × 10−5 16.3
5 5.73 × 10−7 47.3
6 1.97 × 10−9 171
7 2.56 × 10−12 773

ρ ∼ r−2 in a periodic 643-particle box by giving each particle a
uniformly random distance to the centre, and a uniformly random
pair (cos θ , φ) of angles. The cumulative r (z) distribution of the
fake haloes detected in this simulation appears as the dot-dashed
line in Fig. 4; the distribution is reassuringly similar to that from the
uniform Poisson distribution.

2.3 Unbinding

We now have a set of prospective haloes defined using the spatial
positions of the particles. However, these prospective haloes may
include particles which are not physically bound; for example, a por-
tion of a nearby filament may be mistakenly included. We therefore
test particles for boundness to their halo(es), for the first time intro-
ducing velocity information. For each halo, we compare the kinetic
and potential energies of each particle, equivalent to comparing a
particle’s velocity to its escape velocity. This does not always cor-
rectly predict whether the particle will be bound to the halo in the
future, but it is a good estimate. The unbinding process is itera-
tive, i.e. unbound particles are not included in the next iteration’s
unbinding calculations for other particles.

Dividing out the mass of the particle, the kinetic energy of particle
i is (1/ 2) |(vi −vc) + H (x i − xc)|2, wherevc is the velocity centroid
of the original zone of the halo, H is the Hubble constant and xc is
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the position of the central particle of the halo. We use the velocity
centroid of only the original zone because VOBOZ sometimes joins
together large regions which are unrelated in velocity space, which
could skew the velocity centroid if the entire halo were included in
the average. This is discussed further at the end of Section 3.3.

We calculate the potential at each particle i directly

�(xi ) = G
∑

j �=i

M j

|x j − xi | , (2)

where j is summed over all bound particles in the halo, and Mj is the
mass of the jth particle. However, for a halo with many particles,
this direct, O(n2) calculation of the potential for all particles is
unwieldy. For this reason, we find shallower and deeper bounds for
the potential which are calculable in less time. If a particle is bound
in the shallower potential, it is bound in the real potential; if it is
unbound in the deeper potential, it is unbound in the real one. The
true potential is only calculated if the particle is unbound in the
shallower potential but bound in the deeper one.

To obtain these bounds, we partition the halo on a three-
dimensional grid with unequal spacing (see Fig. 5). In each dimen-
sion, the grid spacing is set so that the number of particles in each
one-dimensional bin is the same. In two dimensions, as in Fig. 5,
this would mean that the number of particles in each row and col-
umn was the same. This does not guarantee that the same number
of particles will be in each cell of the grid, but the particle counts
in cells will certainly vary less than if we imposed a uniform grid,
in which case the halo core would likely occupy only a couple of
cells, decreasing the efficacy of the partition.

For the shallower bound to the potential of particle p, we calculate
the potential produced by moving all other particles to the corners
of their cells farthest from p. This potential is calculable in O(n)
time because we only need to calculate the distance to a fixed (no
dependence on n) number of grid corners for each particle. For the
deeper bound, we move all other particles to their cell corners closest
to p, except for particles in the same cell as p, whose contributions
to the potential are calculated directly. For each particle, the number
of these particles requiring direct summation still scales with n, so in
the worst case, the deeper bound still takes O(n2) time. However, the
constant multiplying n2 is much less than in the direct calculation.
When deciding on the number of grid partitions, there is a tradeoff
between accuracy of the upper and lower bounds and the time it
takes to calculate them. The number of partitions should scale with
the number of particles in the largest halo, because more accuracy
will be required to capture all of its structure.

In analysing a large cluster (see Section 3.3), we found initially
that our unbinding algorithm destroyed a few haloes which were
visually evident, particularly when the full halo and not merely the
core zone was used to calculate the velocity centroid. This happened
because the haloes sent to the unbinding algorithm contained high-
velocity particles which were not bound to the object, skewing the
initial estimate of the velocity centroid and thus unduly unbinding
particles which were needed to keep the halo together.

We addressed this problem by unbinding only the most unbound
particles at each iteration, a technique suggested by Kravtsov (pri-
vate communication). The only parameter-free way of doing this
is to unbind only the most unbound particle at every iteration. We
include code to do this with the VOBOZ package, even though it
is cumbersome in practice because the binding energy for each
bound particle must be recalculated each time. A time-saving al-
ternative which we used is to set the threshold on boundness so that,
at first, only extremely unbound particles escape, but then to lower
the threshold gradually to the right level. To do this, we find the

Figure 5. Our method to find the deeper and shallower bounds on the
potential of a halo. The top panel shows a collection of particles, partitioned
by a grid, spaced so that the number of particles in each row and column is
the same. (This is only roughly true, of course, if the number of particles is
not divisible by the number of rows or columns.) The true potential of the
boxed particle p is found by directly summing the potentials from all other
particles. The middle panel illustrates the method of finding the shallower
bound, in which each particle is moved to the farthest corner in its cell from
p. The bottom panel illustrates the deeper bound, in which each particle is
moved to the nearest corner in its cell to p, except if it is in the same cell as
p, in which case its potential is directly summed.

most unbound particle, and set a multiplier m equal to the ratio of its
kinetic to potential energy. The role of m is to inflate the unbinding
threshold artificially by multiplying the potential energy by it. Be-
fore each iteration, we reduce m by dividing it by a parameter f >

1, until m = 1, and the true unbinding criterion appears. The effects
of changing f depend on the resolution and range of velocities in the
simulation, and are discussed in an extreme case in Section 3.3.
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3 T E S T S

Using the NCSA p690 supercomputer, we applied VOBOZ to a set of
nested 2563-particle �CDM simulations (described in NHG), with
box sizes 32, 64, 128 and 256 h−1 Mpc. We divided each simulation
into two parts in each dimension; calculating the particle volumes
and adjacencies took about 1 h and 10 GB of RAM on each octant;
it thus took about 8 h total, trivially split on to eight processors.
The memory required can be reduced at the expense of processor
time if the simulation is split into more pieces. The next step of the
analysis was to join the zones together, which took, in all cases,
about 6 min, and 3.2 GB of RAM. The time spent in the unbinding
step depended greatly on the size of the haloes in the simulation, i.e.
on the mass resolution and threshold density ρmin (lower threshold
densities give larger haloes). In the 32 h−1 Mpc simulation, using
f = √

2, the unbinding step took from 4 to 65 processor hours as
ρmin varied from 400 to 50; over the same range of ρmin, the 256 h−1

Mpc simulation took only from 1 to 4 h. The amount of processor
time also depends on the value of the unbinding delicacy parameter
f . For the results below, we used f = √

2. We did not check that this
choice unbinds particles with maximal delicacy (which we did do for
the cluster discussed in Section 3.3), but we do not expect the results
of this simulation to saturate at values of the parameters as extreme
as those for the cluster in Section 3.3, which has a higher velocity
dispersion.

3.1 Mass functions

As Fig. 6 shows, the mass spectra of VOBOZ haloes from these sim-
ulations, using a density cut-off of ρmin = 100, is roughly consis-
tent with the Sheth, Mo & Tormen (2001) analytical mass function.
While the mass function from the 32 h−1 Mpc simulation fits almost
exactly, there is a systematic increase in the number of haloes of a
given physical mass with box size. This also occurs, to a slightly
lesser degree, in the DENMAX mass functions, indicating that it could
arise from decreasing mass resolution in the simulations, and per-
haps not from poor behaviour by the HFAs.

Figure 6. Mass functions of haloes from 2563-particle �CDM simulations,
of box size 32, 64, 128 and 256 h−1 Mpc. The solid curves show VOBOZ

haloes, using a density cut-off ρmin of 100. The dotted curves show haloes
detected with DENMAX, using the canonical smoothing length of 1/5 the mean
interparticle separation. The dashed line is the Sheth et al. (2001) analytical
prediction.

Figure 7. Mass functions of haloes from a 2563-particle �CDM simulation
of box size 32 h−1 Mpc. The solid curves show VOBOZ haloes, using density
cut-offs ρmin of (from top to bottom) 50, 100, 200 and 400. In the dotted
curve, we weight each halo from the ρmin = 400 list by its probability; e.g.
a 50 per cent probable halo is counted as half a halo. The dot-dashed curve
shows haloes from DENMAX, run with the canonical smoothing length of 1/5
the mean interparticle separation. The dashed line is the Sheth et al. (2001)
analytical mass function.

Figure 8. Dependence of halo mass on mass resolution for four haloes
(one in each panel) identified through all four nested simulations described
in NHG. The solid curves track the bound VOBOZ halo masses (in units of
particle masses in the 256 h−1 Mpc simulation, which is 1.2 × 1011 M�) in
the four simulations using ρmin = 50 (top), 100 (bold), 200 and 400 (bottom).
The lines should be horizontal if the haloes are identical and mass resolu-
tion does not affect the halo-finding. Particularly for large haloes, VOBOZ is
much less sensitive to mass resolution than DENMAX. The discreteness of the
zones making up the smallest (bottom row) haloes becomes apparent in the
256 h−1 Mpc simulation, where the zones contain only ∼100 particles.

The mass function does change with density cut-off ρmin, but
only significantly changes for the largest haloes. Fig. 7 shows how
the mass function of VOBOZ haloes in the 32 h−1 Mpc simulation
changes as ρmin varies from 400 to 50. Generally, the number of
low-mass haloes remains fixed; the main effect of this parameter is
on the slope of the mass function.

It is also useful to see how VOBOZ mass varies with mass resolu-
tion. In NHG, we identified four haloes present in all of the nested
32, 64, 128 and 256 h−1 Mpc simulations we ran. Fig. 8 shows
their masses (normalized to the particle mass in the 256 h−1 Mpc
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Figure 9. The cumulative distribution function of the ratio r (z) between
the peak density of a zone and its critical strongest link density ρ sl, from
haloes in a uniform Poisson simulation (solid curve), from all haloes in the
32 h−1 Mpc simulation (dotted), and from all bound haloes in this simulation
(dashed).

simulation) as a function of box size (and, therefore, mass resolu-
tion), for four different values of ρmin. For all values of ρmin, VOBOZ

returned a halo mass less dependent on mass resolution than did
DENMAX. For the canonical density cut-off, ρmin = 100 (the bold
line in all panels), the mass of the halo changed little with box size.

We had hoped that the unbinding criterion would take away the
dependence on ρmin, and that as the density cut-off ρmin is decreased,
the bound mass of a large halo would plateau. However, adding any
particles to a halo deepens its potential well, feeding back positively
on the number of particles possibly bound to it. Thus, the bound mass
of an isolated halo usually rises unchecked with the pre-unbinding
mass. The unbinding test is still quite necessary, however, to elim-
inate haloes whose high-velocity dispersions render them evanes-
cent. From the 16 777 216 particles in the 32 h−1 Mpc simulation,
876 592 peak particles, and thus zones, were detected; on average,
one in every 19 particles was a peak. The unbinding step reduced
the number of haloes to about 280 000 (±800 as ρmin varied from
50 to 400). In the 256 h−1 Mpc simulation, 900 139 zones were de-
tected, out of which 618 100 ± 100 were bound. It is not surprising
that more bound structures were detected in the simulation encom-
passing the larger physical volume. Fig. 9 shows the cumulative
distribution of the ratio r of peak density to strongest link density
for all haloes and all bound haloes in the 32 h−1 Mpc simulation,
using ρmin = 100. At the low-probability end, the cumulative dis-
tribution function (CDF) of pre-unbinding haloes (the dotted curve)
tracks the CDF from the Poisson simulation, but the CDF of bound
haloes (the dashed curve) departs from the Poisson curve, indicating
that many of the least probable haloes are not bound. This supports
our claim that r is a good tracer of halo probability.

3.2 Correlation functions

Because there is no resolution limit in VOBOZ, we expected to, and
did, find pairs of haloes much closer together than in the algorithm
we previously applied to this simulation, DENMAX2 (see NHG). In
DENMAX2, DENMAX is run as usual, and then is run again, with half
the canonical smoothing length, on each halo from the previous run
to resolve subhaloes. Fig. 10 shows the correlation functions (CFs)
of sets of haloes characterized by cut-offs in probability (assigned

Figure 10. CFs of haloes from a 2563 particle, 32 h−1 Mpc �CDM simula-
tion, with softening length r soft = 0.01 h−1 Mpc. The solid lines are labelled
with their probability cut-offs, ranging from 1σ to 7σ . The dashed line is a
CF of all VOBOZ haloes, weighting pairs by the product of their probabilities.
There is no cut-off imposed in halo size, so the smallest haloes included
have only two particles, giving a minimum halo mass of 5 × 108 M�. The
dotted curve is the CF of all DENMAX2 haloes with greater than 10 particles,
i.e. with a minimum mass of 2 × 109 M�.

using the ratio r), compared to the CF of all DENMAX2 haloes. DEN-
MAX2 imposes a strict 10-particle minimum; the DENMAX2 haloes are
larger and therefore have higher CFs. We also measured the total CF
of haloes, weighting pairs of haloes by the product of their proba-
bilities; this total CF is close to the unweighted CF of all (without a
probability cut-off) haloes. We should note that these CFs are lower
in amplitude than are observed galaxy CFs, which stems from the in-
clusion of even the smallest, two-particle haloes in the simulation,
which have a mass of 5 × 108 M�. The population of DENMAX2

haloes from this simulation which best fit the PSCz power spectrum
(NHG) had at least 800 particles.

Fig. 10 shows another trend as we vary the probability cut-off,
written in terms of the standard Gaussian σ . Starting from a high-
probability cut-off and decreasing it to allow in more dubious haloes,
a ‘hook’ rises in the CF at low radius. This says that the closest pairs
include at least one low-probability halo, which makes sense by our
definition of probability: a low-probability peak has a shallow, and
most likely short, landbridge to another, denser peak. At the same
time, the CF decreases at high separation when improbable haloes
are added, because they are also generally smaller, and therefore
more weakly clustered. Interestingly, the radius separating these
two regimes is relatively constant for plausibly low values of σ ,
producing a nexus (here, at about 0.1 h−1 Mpc) where CFs cross.
It is tempting to interpret the ‘hook’ at low radius as a ‘1-halo’ or
‘Poisson’ term (e.g. Zehavi et al. 2004) in the galaxy CF, consisting
of pairs of galaxies (i.e. subhaloes) within the same halo.

To test this hypothesis, we tried to use a probability cut-off to
produce a ‘2-halo’ term obtained explicitly using the halo model
formalism from an N-body simulation. Kravtsov et al. (2004) found
the 2-halo contribution to the CF of haloes (and subhaloes) exceed-
ing 1012 h−1 M� in an 80 h−1 Mpc simulation, which appears in
their fig. 8. In our Fig. 11, we show CFs of all haloes from our
64, 128 and 256 h−1 Mpc simulations (black curves), along with
attempts at 2-halo terms (grey curves). To obtain the 2-halo term,
we varied a probability cut-off in increments of σ to obtain the CF to
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Figure 11. An attempt to use a probability cut-off to isolate the ‘2-halo’
term in the CF of haloes exceeding 1012 h−1 M� in our 256 (solid), 128
(dashed) and 64 (dotted) h−1 Mpc simulations. The black curves are CFs
of all haloes, while the grey curves are CFs of haloes exceeding probability
cut-offs of 4σ , 5σ and 6σ in the 256, 128 and 64 h−1 Mpc simulations,
respectively. (cf. Kravtsov et al. 2004, fig. 8).

turn away from the full CF at about 1 h−1 Mpc, where Kravtsov et al.
have found that their 1-halo and 2-halo terms cross. The probability
cut-offs for the CFs shown are 4σ , 6σ and 7σ for the 256, 128 and
64 h−1 Mpc simulations, respectively. This supports the idea that
halo probability is a measure of a halo’s ‘subhaloness’, although the
cut-off at which full ‘haloness’ occurs varies with mass resolution,
and is likely somewhat fuzzy. Another thing to point out is that the
scale of the inflection indicating the onset of the CF 1-halo term
increases with the size of the halo sample; as Figs 10 and 11 show,
the scale of the inflection increases by a factor of 10 as the mass
cut-off is raised from 5 × 108 M� to 1012 h−1 M�.

We should also note that in Fig. 11, the CFs of haloes exceeding
the same physical mass from three simulations of different box size
and mass resolution coincide over a wide range of scales, a con-
cordance which we could not achieve in NHG using DENMAX mass.
This boosts our confidence in the mass estimate of VOBOZ.

3.3 A large cluster

We have claimed that VOBOZ is adept at finding small structures
in simulations; to test this claim, we have applied it to a large,
high-resolution cluster of mass a few times 1014 h−1 M�, provided
by Andrey Kravtsov. It was drawn from a simulation appearing in
Tasitsiomi et al. (2004), which has a box size of 80 h−1 Mpc, and a
particle mass ranging from 3.159 × 108 h−1 M� to 64 times that.
The simulation was designed so that the smallest particles would
end up in clusters such as this one. We ran VOBOZ only on these
smallest particles, which comprised over 99 per cent of the mass
at all radii out to 2 h−1 Mpc from the cluster core. In the following
analysis, we considered only haloes within this radius.

In this region with a high-velocity dispersion, it was necessary
to unbind particles delicately, unbinding only the most unbound
particles at every iteration. As described at the end of Section 2.3,
we did this by gradually decreasing a factor multiplying the potential
energy until the true unbinding criterion is left. Fig. 12 shows how
the number of haloes detected depends on the unbinding coarseness
parameter f (the factor by which the potential multiplier is divided

Figure 12. Effect of unbinding coarseness on the number of haloes VOBOZ

finds in a large cluster. The curves show the number of haloes satisfying
various probability cut-offs, from 0σ (top) to 7σ (bottom). As f (the factor
by which the potential multiplier is divided at each iteration) increases, so
does the number of low-probability haloes that VOBOZ completely unbinds.

Figure 13. Mass function of haloes from a large cluster. The dotted curve
shows haloes found by a variant of BDM. The solid curves show VOBOZ haloes
satisfying various probability cut-offs. The top (first) solid curve applies
no cut-off, and the second applies a cut-off of 1σ ; the probability cut-off
increases in increments of σ down to the bottom curve, where it reaches 7σ .
The dashed curve weights each halo with its probability. The odd behaviour
at high M arises from differing masses returned by the two HFAs for the two
largest haloes.

at each iteration). Indeed, it saturates when f is sufficiently small,
which probably arises from particle discreteness, because only one
particle can be unbound at a time. We recommend using a reasonably
small value of f , but it does not matter much if f moderately exceeds
the saturation point, because most of the haloes missed with a large
choice of f have low probability. One might also wonder how the
masses of robust haloes change with f ; with a couple of exceptions,
they change not at all, or only negligibly. For the results discussed
below, we used f =128

√
2. A simulation without as high a velocity

dispersion would likely accommodate a larger value of f . We used
an extremely low-density cut-off ρmin = 1, so that the only halo
which would be affected by ρmin would be the cluster itself.

Fig. 13 shows the mass function of haloes in this cluster returned
by both VOBOZ and a variant (Kravtsov et al. 2004) of BDM. The
BDM halo list was produced by Kravtsov, analysing only the small-
est particles in the cluster as we did. The mass functions from both
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Figure 14. Scatter plot of masses, in units of particle mass, of haloes
detected by both a variant of BDM and VOBOZ. The line shows where the
masses should lie if the HFAs returned identical masses. A VOBOZ halo may
be matched with many BDM haloes. The largest halo is the cluster itself,
which included many larger-mass particles in the actual simulation, so its
mass is underestimated by both algorithms.

algorithms agree reassuringly well, except at the low-mass end,
where VOBOZ detects far more haloes (if we apply no probability
cut-off). However, these are also the most improbable haloes, as
illustrated by the descent of the solid curves with increasing proba-
bility cut-off. We also tried to match haloes detected by both algo-
rithms in a rather crude fashion. For each BDM halo, we formed a
list of all VOBOZ haloes within 0.02 h−1 Mpc of it, which is slightly
under twice the separation between the cluster core as detected by
VOBOZ and the core as detected by BDM. We declared the matching
VOBOZ halo to be the one with the nearest mass on a logarithmic
scale within this sphere. This method is ‘rather crude’ because one
VOBOZ halo can match several BDM haloes. Out of 383 BDM haloes,
five small haloes did not have VOBOZ neighbours within the search
radius. Fig. 14 shows a scatter plot of the masses of matching haloes,
which is again reassuring.

Our method of joining together zones is designed for the ideal-
ized situation of Fig. 3. However, when it is applied to a collection
of middling haloes with a background density above the cut-off,
the halo that happens to have the highest-density core particle can
acquire unwelcome neighbours. Fig. 15 shows an extreme case of
this phenomenon, taken from the Kravtsov cluster. All of the vi-
sually evident subhaloes pass the 4σ test, but the probability we
assign may start to lose its meaning by 7σ , because the most ob-
vious subhalo does not exceed this probability. The ‘halo’ pictured
here has perhaps more structure in velocity space than in position
space, suggesting that an ideal HFA would search for clusters in
six-dimensional position–velocity space. Such a thing could sepa-
rate two colliding haloes, which, in the worst case, VOBOZ would
identify as a single halo, and then perhaps unbind completely be-
cause of its bimodal velocity distribution. In the mean time, the
unbinding method we use seems to work fairly well in picking out
structures in velocity space.

Fig. 15 also illustrates the need to average together only the ve-
locities in the central zone of a halo to find the velocity centroid
used in unbinding. With the velocity centroid defined in this way,
the same set of particles was returned as bound for all values of
the unbinding delicacy parameter f . On the other hand, using the
entire halo to determine the velocity centroid, we obtained results

Figure 15. A particularly messy ‘halo’, before unbinding, in a large cluster.
On the left, the ‘halo’ is shown in position space (with a 1 h−1 Mpc bracket);
on the right, it is shown in velocity space (with a 1500 km s−1 bracket). Only
particles appear in the first row. In subsequent rows, those particles that
VOBOZ deems bound to the final halo are replaced with dark grey (online,
green) particles. In position space, dark grey (online, red) circles show the
centres of ‘subhaloes’ which lie within the pre-unbinding ‘halo’; in velocity
space, circles show the velocity centroids of the subhaloes. The peak particle
of the pre-unbinding halo is encircled in grey (online, magenta). The sec-
ond row shows all haloes; the third row shows all haloes with probabilities
above 2σ ; the fourth shows haloes above 4σ ; and the bottom shows haloes
above 7σ .

which depended strongly on f . Sometimes, we would obtain the
right answer (the halo around the central zone); sometimes, another
halo would be returned (resulting in double counting in the halo
catalog); and sometimes, all particles would be unbound.

C© 2004 RAS, MNRAS 356, 1222–1232



VOBOZ 1231

4 C O N C L U S I O N

We have developed an HFA, called VOBOZ, which is nearly
parameter-free, and which has a resolution limited only by the dis-
creteness of particles in the simulation it is analysing. The VD allows
us to fix the densities and the sets of neighbours for all particles in
a ‘natural’, parameter-independent way, on arguably the finest pos-
sible scale that contains meaningful structure. Further degrees of
freedom are eliminated by assigning to each halo (or subhalo) a
probability that it exists, i.e. that it did not arise from Poisson noise.

Of the two parameters in VOBOZ, one of them exists only to
save processor time, and need not be used if one has no pro-
cessor time constraints. This parameter controls the delicacy with
which particles are unbound, and the results saturate at the ‘right’
answer (the parameter-free situation in which one particle is un-
bound at a time) when the unbinding becomes sufficiently deli-
cate. Additionally, most of the extra haloes uncovered at extreme
delicacy have meager probabilities. The remaining parameter is
a density cut-off, necessary because haloes do not extend to low
densities in the real Universe. However, it only affects the masses
of the largest haloes in the simulation, and not the masses or de-
tection of subhaloes, which is where reliability in HFAs is most
needed.

An ideal HFA would find groups of particles in both position
and velocity space, or even consider neighbouring time slices in
a simulation. In VOBOZ, the velocities are used only to decide if
particles are energetically bound to haloes found in position space.
This is an approximate criterion, but it seems to work acceptably
well.

The probability VOBOZ returns for each halo is certainly tied to
the finite mass resolution of the simulation it is analysing. However,
as we decrease a cut-off in halo probability, an interesting signal
emerges in the halo CF, which resembles the 1-halo term in the halo
model of large-scale structure. This suggests an interpretation of
halo probability as a measure of a halo’s ‘subhaloness’, which may
increase VOBOZ’s appeal for researchers of the halo model.

The VOBOZ code is publicly available, at http://casa.colorado.
edu/∼neyrinck/voboz/.
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A P P E N D I X A : G UA R D I N G S U B B OX E S

To check that dividing the simulation box does not alter its VD, we
surround each subbox with a buffer zone large enough to contain
all of the neighbours of the particles inside the subbox. Fig. A1
shows a subbox surrounded by a buffer. We have deployed guard
particles, shown as diamonds, inside the buffer. If one of the guard
particles is returned as a neighbour to a subbox particle, then it
is possible that the subbox particle has a neighbour outside the
buffer, and we must recalculate the VD on the subbox with a larger
buffer.

Figure A1. The same region as in Fig. 1, with a VD on a subbox superim-
posed. Solid lines demarcate the subbox, with the buffer around it outlined
by dashed lines. Guard points in the buffer appear as diamonds. The Voronoi
cells calculated using all particles appear in grey, while the Voronoi cells of
particles in the subbox calculated using only the subbox, buffer and guard
particles appear in black. There are a few discrepancies, notably at the centre
on top, and on both sides near the bottom. Discrepancies indicate that the
buffer should be enlarged, and the VD recalculated.
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Figure A2. A diagram showing the calculation of g, the optimal distance
from the subbox (at the bottom of the diagram) to the guard points. The guard
points preempt alteration of the subbox VD, ensuring that points outside the
buffer, of width b, cannot affect it. The diamonds are guard points diagonally
adjacent on a two-dimensional grid of spacing s, offset by a distance g from
a face of the subbox. The hardest scenario for the guard points to preempt
has a particle in the subbox at the square, and a particle outside the buffer
at the triangle, which would have been one of the square’s neighbours if it
were inside the buffer. The guard points preempt any potential neighbours to
the square which lie in the shaded region. The dotted lines are perpendicular
bisectors between the diamonds and the square.

The distance g between the subbox and the guard particles is
determined as follows. The guard particles are arranged inside
each face of the buffer, of width b, on two-dimensional grids with
spacing s. Fig. A2 shows two diagonally adjacent (and thus sepa-

rated by a distance s
√

2) guard particles, shown as diamonds. We
want the guard particles to ‘catch’ any subbox particles for which a
particle outside the buffer could affect its Voronoi cell. The worst-
case scenario, in which the guard particles have the least guarding
power, occurs if there is a particle right on the border of the sub-
box, where the square is. The closest possible point to the square
outside the buffer is the triangle. If the triangle is in the square’s
set of neighbours (but is artificially excluded because it lies outside
the buffer), then so will a guard point if the perpendicular bisec-
tor (a dotted line) between that guard point and the square intersects
the line segment between the triangle and square at its mid-point (the
confluence of the three lines of length b/2), or nearer to the square
than the triangle. So the guard points must be placed on a sphere
with radius b/2, tangent to both the buffer and subbox boundaries.
This leads to an equation for the largest-possible g:

g = b

2

(
1 +

√
1 − 2s2

b2

)
. (A1)

As the number of guard points increases, s decreases, which moves
g toward the edge of the buffer. Thus, increasing the number of
guard points can provide an alternative to increasing the buffer
size if guard points are encountered in the tessellation, but only
if the buffer truly contains all of the neighbours of points inside the
subbox.
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